On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods

dc.contributor.authorSamaniego Alvarado, Esteban Patricio
dc.date.accessioned2018-01-11T21:21:49Z
dc.date.available2018-01-11T21:21:49Z
dc.date.issued2012-02-24
dc.description.abstractMeshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass-lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node. © 2011 John Wiley & Sons, Ltd.
dc.identifier.doi10.1002/nme.3275
dc.identifier.issn295981
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84856358147&doi=10.1002%2fnme.3275&partnerID=40&md5=0823948add093cc09cb97d9615f616b6
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/22156
dc.language.isoen_US
dc.sourceInternational Journal for Numerical Methods in Engineering
dc.subjectDynamic Crack Propagation
dc.subjectElement Free Galerkin Method
dc.subjectEnrichment
dc.subjectExplicit Time Integration
dc.subjectXefg
dc.subjectXfem
dc.titleOn the numerical stability and mass-lumping schemes for explicit enriched meshfree methods
dc.typeArticle
dc.ucuenca.afiliacionsamaniego, e., civil engineering school and grupo de ciencias de la tierra y el ambiente, universidad de cuenca, av. 12 de abril s/n., cuenca, ecuador
dc.ucuenca.correspondenciaTalebi, H.; Institute of Structural Mechanics, Bauhaus-Universitat Weimar, Marienstrasse 15, D-99423, Weimar, Germany; email: hossein.talebi@uni-weimar.de
dc.ucuenca.cuartilQ1
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.factorimpacto2.47
dc.ucuenca.idautor0102052594
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones33
dc.ucuenca.volumen89

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections