Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings

dc.contributor.authorHernández Deyslen, Mariano
dc.date.accessioned2023-01-10T13:40:04Z
dc.date.available2023-01-10T13:40:04Z
dc.date.issued2022
dc.description.abstractBuildings are one of the largest consumers of electrical energy, making it important to develop different strategies to help to reduce electricity consumption. Building energy consumption forecasting strategies are widely used to support demand management decisions, but these strategies require large data sets to achieve an accurate electric consumption forecast, so they are not commonly used for buildings with a short history of record keeping. Based on this, the objective of this study is to determine, through continuous hourly electricity consumption forecasting strategies, the amount of data needed to achieve an accurate forecast. The proposed forecasting strategies were evaluated with Random Forest, eXtreme Gradient Boost, Convolutional Neural Network, and Temporal Convolutional Network algorithms using 4 years of electricity consumption data from two buildings located on the campus of the University of Valladolid. For performance evaluation, two scenarios were proposed for each of the proposed forecasting strategies. The results showed that for forecasting horizons of 1 week, it was possible to obtain a mean absolute percentage error (MAPE) below 7% for Building 1 and a MAPE below 10% for Building 2 with 6 months of data, while for a forecast horizon of 1 month, it was possible to obtain a MAPE below 10% for Building 1 and below 11% for Building 2 with 10 months of data. However, if the distribution of the data captured in the buildings does not undergo sudden changes, the decision tree algorithms obtain better results. However, if there are sudden changes, deep learning algorithms are a better choice
dc.identifier.doi10.1002/ese3.1298
dc.identifier.issn2050-0505
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40646
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85137244928&doi=10.1002%2fese3.1298&origin=inward&txGid=55ac34e3df5e7bac3909437e6fbff2d6
dc.language.isoes_ES
dc.sourceEnergy Science and Engineering
dc.subjectBuilding energy consumption
dc.titleComparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings
dc.typeARTÍCULO
dc.ucuenca.afiliacionSolís, M., Instituto Tecnológico de Costa Rica (ITCR), Cartago, Costa rica
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaHernández Callejo, Luis, luis.hernandez.callejo@uva.es
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto069
dc.ucuenca.idautor0000-0001-7593-691X
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://onlinelibrary.wiley.com/journal/20500505
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 10, número 12

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format
Description:
document

Collections