Development and assessment of seasonal rainfall forecasting models for the bani and the Senegal basins by identifying the best predictive teleconnection

dc.contributor.authorKhaliduo Mamadou, Baá
dc.date.accessioned2023-01-09T19:20:10Z
dc.date.available2023-01-09T19:20:10Z
dc.date.issued2022
dc.description.abstractThe high variability of rainfall in the Sahel region causes droughts and floods that affect millions of people every year. Several rainfall forecasting models have been proposed, but the results still need to be improved. In this study, linear, polynomial, and exponential models are developed to forecast rainfall in the Bani and Senegal River basins. All three models use Atlantic sea surface temperature (SST). A fourth algorithm using stepwise regression was also developed for the precipitation estimates over these two basins. The stepwise regression algorithm uses SST with covariates, mean sea level pressure (MSLP), relative humidity (RHUM), and five El Niño indices. The explanatory variables SST, RHUM, and MSLP were selected based on principal component analysis (PCA) and cluster analysis to find the homogeneous region of the Atlantic with the greatest predictive ability. PERSIANN-CDR rainfall data were used as the dependent variable. Models were developed for each pixel of 0.25° × 0.25° spatial resolution. The second-order polynomial model with a lag of about 11 months outperforms all other models and explains 87% of the variance in precipitation over the two watersheds. Nash–Sutcliffe efficiency (NSE) values were between 0.751 and 0.926 for the Bani River basin and from 0.175 to 0.915 for the Senegal River basin, for which the lowest values are found in the driest area (Sahara). Results showed that the North Atlantic SST shows a more robust teleconnection with precipitation dynamics in both basins.
dc.identifier.doi10.3390/rs14246397
dc.identifier.issn2072-4292
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40640
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85144814083&origin=resultslist&sort=cp-f&src=s&st1=Development+and+Assessment+of+Seasonal+Rainfall+Forecasting+Models+for+the+Bani+and+the+Senegal+Basins+by+Identifying+the+Best+Predictive+Teleconnection&sid=42708a3b44795ac4c02f52b41c391b55&sot=b&sdt=b&sl=167&s=TITLE-ABS-KEY%28Development+and+Assessment+of+Seasonal+Rainfall+Forecasting+Models+for+the+Bani+and+the+Senegal+Basins+by+Identifying+the+Best+Predictive+Teleconnection%29&relpos=0&citeCnt=0&searchTerm=
dc.language.isoes_ES
dc.sourceRemote Sensing
dc.subjectModel
dc.titleDevelopment and assessment of seasonal rainfall forecasting models for the bani and the Senegal basins by identifying the best predictive teleconnection
dc.typeARTÍCULO
dc.ucuenca.afiliacionGómez, M., Universidad Autónoma del Estado de México, Toluca, Mexico
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0712 - Tecnología de Protección del Medio Ambiente
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaKhaliduo Mamadou, Baá , khalidou@uaemex.mx
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.283
dc.ucuenca.idautor0000-0003-1710-5653
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 14, número 24

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
5.1 MB
Format:
Adobe Portable Document Format
Description:
document

Collections