Flood early warning systems using machine learning techniques: the case of the Tomebamba catchment at the southern Andes of Ecuador
| dc.contributor.author | Bendix, Jor | |
| dc.contributor.author | Muñoz Pauta, Paúl Andrés | |
| dc.contributor.author | Orellana Alvear, Johanna Marlene | |
| dc.contributor.author | Célleri Alvear, Rolando Enrique | |
| dc.contributor.author | Feyen, Jan | |
| dc.date.accessioned | 2022-02-10T14:59:27Z | |
| dc.date.available | 2022-02-10T14:59:27Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods. | |
| dc.identifier.doi | 10.3390/hydrology8040183 | |
| dc.identifier.issn | 2306-5338 | |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/38023 | |
| dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85121787363&origin=resultslist&sort=plf-f&src=s&st1=Flood+early+warning+systems+using+machine+learning+techniques%3a+The+case+of+the+tomebamba+catchment+at+the+southern+Andes+of+Ecuador&sid=4065c7feb5a5555ffd1b4907acff3682&sot=b&sdt=b&sl=146&s=TITLE-ABS-KEY%28Flood+early+warning+systems+using+machine+learning+techniques%3a+The+case+of+the+tomebamba+catchment+at+the+southern+Andes+of+Ecuador%29&relpos=0&citeCnt=0&searchTerm= | |
| dc.language.iso | es_ES | |
| dc.source | Hydrology | |
| dc.subject | Hydrological extremes | |
| dc.subject | Flood early warning | |
| dc.subject | Forecasting | |
| dc.subject | Machine learning | |
| dc.subject | Andes | |
| dc.title | Flood early warning systems using machine learning techniques: the case of the Tomebamba catchment at the southern Andes of Ecuador | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.afiliacion | Orellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Muñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Muñoz, P., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Celleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Feyen, J., KU Leuven (Katholieke Universiteit Leuven), Leuven, Belgica | |
| dc.ucuenca.afiliacion | Bendix, J., University of Marburg, Marburg, Alemania | |
| dc.ucuenca.areaconocimientofrascatiamplio | 1. Ciencias Naturales y Exactas | |
| dc.ucuenca.areaconocimientofrascatidetallado | 1.5.10 Recursos Hídricos | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 1.5 Ciencias de la Tierra y el Ambiente | |
| dc.ucuenca.areaconocimientounescoamplio | 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas | |
| dc.ucuenca.areaconocimientounescodetallado | 0521 - Ciencias Ambientales | |
| dc.ucuenca.areaconocimientounescoespecifico | 052 - Medio Ambiente | |
| dc.ucuenca.cuartil | Q2 | |
| dc.ucuenca.factorimpacto | 0.753 | |
| dc.ucuenca.idautor | 0104162268 | |
| dc.ucuenca.idautor | 0104645619 | |
| dc.ucuenca.idautor | 0000-0001-6559-2033 | |
| dc.ucuenca.idautor | 0000-0002-2334-6499 | |
| dc.ucuenca.idautor | 0602794406 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.urifuente | https://www.mdpi.com/2306-5338/8/4 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Volumen 8, número 4 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 2.5 MB
- Format:
- Adobe Portable Document Format
- Description:
- document
