Flood early warning systems using machine learning techniques: the case of the Tomebamba catchment at the southern Andes of Ecuador

dc.contributor.authorBendix, Jor
dc.contributor.authorMuñoz Pauta, Paúl Andrés
dc.contributor.authorOrellana Alvear, Johanna Marlene
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.contributor.authorFeyen, Jan
dc.date.accessioned2022-02-10T14:59:27Z
dc.date.available2022-02-10T14:59:27Z
dc.date.issued2021
dc.description.abstractWorldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods.
dc.identifier.doi10.3390/hydrology8040183
dc.identifier.issn2306-5338
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/38023
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85121787363&origin=resultslist&sort=plf-f&src=s&st1=Flood+early+warning+systems+using+machine+learning+techniques%3a+The+case+of+the+tomebamba+catchment+at+the+southern+Andes+of+Ecuador&sid=4065c7feb5a5555ffd1b4907acff3682&sot=b&sdt=b&sl=146&s=TITLE-ABS-KEY%28Flood+early+warning+systems+using+machine+learning+techniques%3a+The+case+of+the+tomebamba+catchment+at+the+southern+Andes+of+Ecuador%29&relpos=0&citeCnt=0&searchTerm=
dc.language.isoes_ES
dc.sourceHydrology
dc.subjectHydrological extremes
dc.subjectFlood early warning
dc.subjectForecasting
dc.subjectMachine learning
dc.subjectAndes
dc.titleFlood early warning systems using machine learning techniques: the case of the Tomebamba catchment at the southern Andes of Ecuador
dc.typeARTÍCULO
dc.ucuenca.afiliacionOrellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionMuñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Muñoz, P., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionCelleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionFeyen, J., KU Leuven (Katholieke Universiteit Leuven), Leuven, Belgica
dc.ucuenca.afiliacionBendix, J., University of Marburg, Marburg, Alemania
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.753
dc.ucuenca.idautor0104162268
dc.ucuenca.idautor0104645619
dc.ucuenca.idautor0000-0001-6559-2033
dc.ucuenca.idautor0000-0002-2334-6499
dc.ucuenca.idautor0602794406
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/2306-5338/8/4
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 8, número 4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:
document

Collections