Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge
| dc.contributor.author | Mosquera Rojas, Giovanny Mauricio | |
| dc.contributor.author | Crespo Sánchez, Patricio Javier | |
| dc.contributor.author | Breuer, Lutz | |
| dc.contributor.author | Feyen Null, Jan Jozef albert | |
| dc.contributor.author | Windhorst, David | |
| dc.date.accessioned | 2020-06-09T16:51:29Z | |
| dc.date.available | 2020-06-09T16:51:29Z | |
| dc.date.issued | 2020 | |
| dc.description | Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate. | |
| dc.description.abstract | Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate. | |
| dc.identifier.doi | 10.1002/hyp.13733 | |
| dc.identifier.issn | 0885-6087 | |
| dc.identifier.uri | https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.13733 | |
| dc.language.iso | es_ES | |
| dc.source | Hydrological Processes | |
| dc.subject | Andosol andisol | |
| dc.subject | Hillslope hydrology | |
| dc.subject | Soil moisture | |
| dc.subject | Stable isotopes | |
| dc.subject | Subsurface flow path | |
| dc.subject | Transit time | |
| dc.subject | Tropical alpine (Páramo) | |
| dc.subject | Vadose unsaturated zone | |
| dc.title | Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge | |
| dc.title.alternative | Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: a wet layered sloping sponge | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.afiliacion | Mosquera, G., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Mosquera, G., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador; Mosquera, G., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Mosquera, G., Universidad Justus Liebig Giessen, Giessen, Alemania | |
| dc.ucuenca.afiliacion | Crespo, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Crespo, P., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador; Crespo, P., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Breuer, L., Universidad Justus Liebig Giessen, Giessen, Alemania | |
| dc.ucuenca.afiliacion | Feyen, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Feyen, J., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador; Feyen, J., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Windhorst, D., Universidad Justus Liebig Giessen, Giessen, Alemania | |
| dc.ucuenca.areaconocimientofrascatiamplio | 1. Ciencias Naturales y Exactas | |
| dc.ucuenca.areaconocimientofrascatidetallado | 1.5.10 Recursos Hídricos | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 1.5 Ciencias de la Tierra y el Ambiente | |
| dc.ucuenca.areaconocimientounescoamplio | 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas | |
| dc.ucuenca.areaconocimientounescodetallado | 0521 - Ciencias Ambientales | |
| dc.ucuenca.areaconocimientounescoespecifico | 052 - Medio Ambiente | |
| dc.ucuenca.correspondencia | Mosquera Rojas, Giovanny Mauricio, moquerar@ucuenca.edu.ec | |
| dc.ucuenca.cuartil | Q1 | |
| dc.ucuenca.factorimpacto | 1.42 | |
| dc.ucuenca.idautor | 0104450911 | |
| dc.ucuenca.idautor | 0102572773 | |
| dc.ucuenca.idautor | Sgrp-3137-3 | |
| dc.ucuenca.idautor | EJ147468 | |
| dc.ucuenca.idautor | Sgrp-3137-5 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.urifuente | https://onlinelibrary.wiley.com/journal/10991085 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Volumen 34, Número 9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 6.33 MB
- Format:
- Adobe Portable Document Format
- Description:
- document
