Spatial prediction of soil water retention in a Páramo landscape: methodological insight into machine learning using random forest

dc.contributor.authorGuio Blanco, Carlos Manuel
dc.contributor.authorBrito Gómez, Víctor Manuel
dc.contributor.authorCrespo Sánchez, Patricio Javier
dc.contributor.authorLieb, Mareike
dc.date.accessioned2018-10-17T16:56:34Z
dc.date.available2018-10-17T16:56:34Z
dc.date.issued2018
dc.descriptionSoils of Páramo ecosystems regulate the water supply to many Andean populations. In spite of being a necessary input to distributed hydrological models, regionalized soil water retention data from these areas are currently not available. The investigated catchment of the Quinuas River has a size of about 90 km 2 and comprises parts of the Cajas National Park in southern Ecuador. It is dominated by soils with high organic carbon contents, which display characteristics of volcanic influence. Besides providing spatial predictions of soil water retention at the catchment scale, the study presents a detailed methodological insight to model setup and validation of the underlying machine learning approach with random forest. The developed models performed well predicting volumetric water contents between 0.55 and 0.9 cm 3 cm− 3. Among the predictors derived from a digital elevation model …
dc.description.abstractSoils of Páramo ecosystems regulate the water supply to many Andean populations. In spite of being a necessary input to distributed hydrological models, regionalized soil water retention data from these areas are currently not available. The investigated catchment of the Quinuas River has a size of about 90 km 2 and comprises parts of the Cajas National Park in southern Ecuador. It is dominated by soils with high organic carbon contents, which display characteristics of volcanic influence. Besides providing spatial predictions of soil water retention at the catchment scale, the study presents a detailed methodological insight to model setup and validation of the underlying machine learning approach with random forest. The developed models performed well predicting volumetric water contents between 0.55 and 0.9 cm 3 cm− 3. Among the predictors derived from a digital elevation model …
dc.identifier.doi10.1016/j.geoderma.2017.12.002
dc.identifier.issn0016-7061
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038206836&origin=inward
dc.language.isoes_ES
dc.sourceGeoderma
dc.subjectPáramo
dc.subjectParameter tuning
dc.subjectRandom Forest
dc.subjectValidation
dc.subjectWater retention
dc.titleSpatial prediction of soil water retention in a Páramo landscape: methodological insight into machine learning using random forest
dc.typeARTÍCULO
dc.ucuenca.afiliacionGuio, C., Helmholtz Zentrum für Umweltforschung, Leipzig, Alemania
dc.ucuenca.afiliacionBrito, V., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionCrespo, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionLieb, M., Helmholtz Zentrum für Umweltforschung, Leipzig, Alemania
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaLieb, Mareike , mareike.liess@ufz.de
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.717
dc.ucuenca.idautorSgrp-360-1
dc.ucuenca.idautor0104484605
dc.ucuenca.idautor0102572773
dc.ucuenca.idautor0000-0001-9325-199x
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttp://www.sciencedirect.com/science/journal/00167061
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvol. 316

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:
document

Collections