Analysis of the integration of drift detection methods in learning algorithms for electrical consumption forecasting in smart buildings

dc.contributor.authorMariano Hernández, Deyslen
dc.contributor.authorHernández Callejo, Luis
dc.contributor.authorSolís, Martín
dc.contributor.authorZorita Lamadrid, Angel
dc.contributor.authorDuque Perez, Oscar
dc.contributor.authorGonzalez Morales, Luis Gerardo
dc.contributor.authorGarcía, Felix Santos
dc.contributor.authorJaramillo Duque, Alvaro
dc.contributor.authorOspino Castro, Adalberto
dc.contributor.authorAlonso Gómez, Victor
dc.contributor.authorHugo J., Bello
dc.date.accessioned2022-07-18T13:53:00Z
dc.date.available2022-07-18T13:53:00Z
dc.date.issued2022
dc.description.abstractBuildings are currently among the largest consumers of electrical energy with considerable increases in CO2 emissions in recent years. Although there have been notable advances in energy efficiency, buildings still have great untapped savings potential. Within demand-side management, some tools have helped improve electricity consumption, such as energy forecast models. However, because most forecasting models are not focused on updating based on the changing nature of buildings, they do not help exploit the savings potential of buildings. Considering the aforementioned, the objective of this article is to analyze the integration of methods that can help forecasting models to better adapt to the changes that occur in the behavior of buildings, ensuring that these can be used as tools to enhance savings in buildings. For this study, active and passive change detection methods were considered to be integrators in the decision tree and deep learning models. The results show that constant retraining for the decision tree models, integrating change detection methods, helped them to better adapt to changes in the whole building’s electrical consumption. However, for deep learning models, this was not the case, as constant retraining with small volumes of data only worsened their performance. These results may lead to the option of using tree decision models in buildings where electricity consumption is constantly changing.
dc.identifier.doi10.3390/su14105857
dc.identifier.issn20711050
dc.identifier.urihttps://www.mdpi.com/2071-1050/14/10/5857
dc.language.isoes_ES
dc.sourceSustainability
dc.subjectDrift detection
dc.subjectelectrical consumption forecasting
dc.subjectenergy forecasting
dc.subjectmachine learning
dc.subjectsmart buildings
dc.titleAnalysis of the integration of drift detection methods in learning algorithms for electrical consumption forecasting in smart buildings
dc.typeARTÍCULO
dc.ucuenca.afiliacionMariano, D., Instituto Tecnológico de Santo Domingo INTEC, Santo Domingo, Republica dominicana
dc.ucuenca.afiliacionHernández, L., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionSolís, M., Instituto Tecnológico de Costa Rica (ITCR), Cartago, Costa rica
dc.ucuenca.afiliacionZorita, A., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionDuque, O., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionGonzalez, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionGarcía, F., Instituto Tecnológico de Santo Domingo INTEC, Santo Domingo, Republica dominicana
dc.ucuenca.afiliacionJaramillo, A., Universidad de Antioquia, Medellin, Colombia
dc.ucuenca.afiliacionOspino, A., Universidad de la Costa, Barranquilla, Colombia
dc.ucuenca.afiliacionAlonso, V., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionHugo, B., Universidad de Valladolid, Soria, España
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaMariano Hernández, Deyslen, deyslen.mariano@intec.edu.do
dc.ucuenca.correspondenciaHernández Callejo, Luis, luis.gonzalez@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto0.664
dc.ucuenca.idautor0000-0002-4255-3450
dc.ucuenca.idautor0000-0002-8822-2948
dc.ucuenca.idautor0000-0003-4750-1198
dc.ucuenca.idautor0000-0001-7593-691X
dc.ucuenca.idautor0000-0003-2994-2520
dc.ucuenca.idautor1729711059
dc.ucuenca.idautor0000-0003-2973-3657
dc.ucuenca.idautor0000-0001-5281-7336
dc.ucuenca.idautor0000-0003-1466-0424
dc.ucuenca.idautor0000-0001-5107-4892
dc.ucuenca.idautor0000-0002-3687-1938
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/sustainability
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVol.14, número10

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
Description:
document

Collections