Near-real-time satellite precipitation data ingestion into peak runoff forecasting models

dc.contributor.authorMuñoz Pauta, Paul Andrés
dc.contributor.authorGerald Augusto, Corzo Pérez
dc.contributor.authorDimitri, Solomatine
dc.contributor.authorJan, Feyen
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.date.accessioned2023-01-24T14:35:16Z
dc.date.available2023-01-24T14:35:16Z
dc.date.issued2023
dc.description.abstractExtreme peak runoff forecasting is still a challenge in hydrology. In fact, the use of traditional physically-based models is limited by the lack of sufficient data and the complexity of the inner hydrological processes. Here, we employ a Machine Learning technique, the Random Forest (RF) together with a combination of Feature Engineering (FE) strategies for adding physical knowledge to RF models and improving their forecasting performances. The FE strategies include precipitation-event classification according to hydrometeorological criteria and separation of flows into baseflow and directflow. We used ∼ 3.5 years of hourly precipitation information retrieved from two near-real-time satellite precipitation databases (PERSIANN-CCS and IMERG-ER), and runoff data at the outlet of a 3391-km2 basin located in the tropical Andes of Ecuador. The developed models obtained Nash-Sutcliffe efficiencies varying from 0.86 to 0.59 for lead times between 1 and 6 h. The best performances were obtained for peak runoffs triggered by short-extension precipitation events (<50 km2) where infiltration- or saturation-excess runoff responses are well learned by the RF models. Conversely, the forecasting difficulty is associated with extensive precipitation events. For such conditions, a deeper characterization of the biophysical characteristics of the basin is encouraged for capturing the dynamic of directflow across multiple runoff responses. All in all, the potential to employ near-real-time satellite precipitation and the use of FE strategies for improving RF forecasting provides hydrologists with new tools for real-time runoff forecasting in remote or complex regions.
dc.identifier.doi10.1016/j.envsoft.2022.105582
dc.identifier.issn1364-8152
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85143327427&doi=10.1016%2fj.envsoft.2022.105582&origin=inward&txGid=c07f74911f0f1747717040cb383eabc0
dc.language.isoes_ES
dc.sourceEnvironmental Modelling and Software
dc.subjectBaseflow separation
dc.subjectExtreme runoff
dc.subjectFeature engineering
dc.subjectForecasting
dc.subjectIMERG
dc.subjectPERSIANN
dc.subjectTropical andes
dc.titleNear-real-time satellite precipitation data ingestion into peak runoff forecasting models
dc.typeARTÍCULO
dc.ucuenca.afiliacionMuñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Muñoz, P., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionGerald, C., IHE Delft Institute for Water Education, Delft, Holanda
dc.ucuenca.afiliacionDimitri, S., IHE Delft Institute for Water Education, Delft, Holanda; Dimitri, S., Delft University of Technology (TU Delft), Mekelweg, Holanda
dc.ucuenca.afiliacionJan, F., KU Leuven (Katholieke Universiteit Leuven), Leuven, Belgica
dc.ucuenca.afiliacionCelleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaMuñoz Pauta, Paul Andres, paul.munozp@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.426
dc.ucuenca.idautor0104645619
dc.ucuenca.idautor0000-0002-2773-7817
dc.ucuenca.idautor0000-0003-2031-9871
dc.ucuenca.idautor0000-0002-2334-6499
dc.ucuenca.idautor0602794406
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.sciencedirect.com/journal/environmental-modelling-and-software/vol/160/suppl/C
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 160

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
6.24 MB
Format:
Adobe Portable Document Format
Description:
document

Collections