Near-real-time satellite precipitation data ingestion into peak runoff forecasting models
| dc.contributor.author | Muñoz Pauta, Paul Andrés | |
| dc.contributor.author | Gerald Augusto, Corzo Pérez | |
| dc.contributor.author | Dimitri, Solomatine | |
| dc.contributor.author | Jan, Feyen | |
| dc.contributor.author | Célleri Alvear, Rolando Enrique | |
| dc.date.accessioned | 2023-01-24T14:35:16Z | |
| dc.date.available | 2023-01-24T14:35:16Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Extreme peak runoff forecasting is still a challenge in hydrology. In fact, the use of traditional physically-based models is limited by the lack of sufficient data and the complexity of the inner hydrological processes. Here, we employ a Machine Learning technique, the Random Forest (RF) together with a combination of Feature Engineering (FE) strategies for adding physical knowledge to RF models and improving their forecasting performances. The FE strategies include precipitation-event classification according to hydrometeorological criteria and separation of flows into baseflow and directflow. We used ∼ 3.5 years of hourly precipitation information retrieved from two near-real-time satellite precipitation databases (PERSIANN-CCS and IMERG-ER), and runoff data at the outlet of a 3391-km2 basin located in the tropical Andes of Ecuador. The developed models obtained Nash-Sutcliffe efficiencies varying from 0.86 to 0.59 for lead times between 1 and 6 h. The best performances were obtained for peak runoffs triggered by short-extension precipitation events (<50 km2) where infiltration- or saturation-excess runoff responses are well learned by the RF models. Conversely, the forecasting difficulty is associated with extensive precipitation events. For such conditions, a deeper characterization of the biophysical characteristics of the basin is encouraged for capturing the dynamic of directflow across multiple runoff responses. All in all, the potential to employ near-real-time satellite precipitation and the use of FE strategies for improving RF forecasting provides hydrologists with new tools for real-time runoff forecasting in remote or complex regions. | |
| dc.identifier.doi | 10.1016/j.envsoft.2022.105582 | |
| dc.identifier.issn | 1364-8152 | |
| dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85143327427&doi=10.1016%2fj.envsoft.2022.105582&origin=inward&txGid=c07f74911f0f1747717040cb383eabc0 | |
| dc.language.iso | es_ES | |
| dc.source | Environmental Modelling and Software | |
| dc.subject | Baseflow separation | |
| dc.subject | Extreme runoff | |
| dc.subject | Feature engineering | |
| dc.subject | Forecasting | |
| dc.subject | IMERG | |
| dc.subject | PERSIANN | |
| dc.subject | Tropical andes | |
| dc.title | Near-real-time satellite precipitation data ingestion into peak runoff forecasting models | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.afiliacion | Muñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Muñoz, P., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Gerald, C., IHE Delft Institute for Water Education, Delft, Holanda | |
| dc.ucuenca.afiliacion | Dimitri, S., IHE Delft Institute for Water Education, Delft, Holanda; Dimitri, S., Delft University of Technology (TU Delft), Mekelweg, Holanda | |
| dc.ucuenca.afiliacion | Jan, F., KU Leuven (Katholieke Universiteit Leuven), Leuven, Belgica | |
| dc.ucuenca.afiliacion | Celleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.areaconocimientofrascatiamplio | 1. Ciencias Naturales y Exactas | |
| dc.ucuenca.areaconocimientofrascatidetallado | 1.5.10 Recursos Hídricos | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 1.5 Ciencias de la Tierra y el Ambiente | |
| dc.ucuenca.areaconocimientounescoamplio | 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas | |
| dc.ucuenca.areaconocimientounescodetallado | 0521 - Ciencias Ambientales | |
| dc.ucuenca.areaconocimientounescoespecifico | 052 - Medio Ambiente | |
| dc.ucuenca.correspondencia | Muñoz Pauta, Paul Andres, paul.munozp@ucuenca.edu.ec | |
| dc.ucuenca.cuartil | Q1 | |
| dc.ucuenca.factorimpacto | 1.426 | |
| dc.ucuenca.idautor | 0104645619 | |
| dc.ucuenca.idautor | 0000-0002-2773-7817 | |
| dc.ucuenca.idautor | 0000-0003-2031-9871 | |
| dc.ucuenca.idautor | 0000-0002-2334-6499 | |
| dc.ucuenca.idautor | 0602794406 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.urifuente | https://www.sciencedirect.com/journal/environmental-modelling-and-software/vol/160/suppl/C | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Volumen 160 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 6.24 MB
- Format:
- Adobe Portable Document Format
- Description:
- document
