Extent prediction of the information and influence propagation in online social networks

dc.contributor.authorOrtiz Gaona, Raul Marcelo
dc.contributor.authorPostigo Boix, Marcos
dc.contributor.authorMelús Moreno, José Luis
dc.date.accessioned2020-06-12T13:04:51Z
dc.date.available2020-06-12T13:04:51Z
dc.date.issued2021
dc.description
dc.description.abstractWe present a new mathematical model that predicts the number of users informed and influenced by messages that are propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn considers the affinity and relevance between nodes. We could verify that the messages to inform and influence, as well as their importance, produce different propagation behaviors in an online social network. We carried out laboratory tests with our model and with the baseline models Linear Threshold and Independent Cascade, which are currently used in many scientific works. The results were evaluated by comparing them with empirical data. The tests show conclusively that the predictions of our model are notably more accurate and precise than the predictions of the baseline models. Our model can contribute to the development of models that maximize the propagation of messages; to predict the spread of viruses in computer networks, mobile telephony and online social networks.
dc.identifier.doi10.1007/s10588-020-09309-6
dc.identifier.issn1381-298X
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85082921700&origin=resultslist&sort=plf-f&src=s&st1=Extent+prediction+of+the+information+and+influence+propagation+in+online+social+networks&sid=2f002e414241b7cc2c2be109ea466c05&sot=b&sdt=b&sl=103&s=TITLE-ABS-KEY%28Extent+prediction+of+the+information+and+influence+propagation+in+online+social+networks%29&relpos=0&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1
dc.language.isoes_ES
dc.sourceComputational and Mathematical Organization Theory
dc.subjectInfluence diffusion
dc.subjectInformation diffusion
dc.subjectInfluence threshold
dc.subjectInformation threshold
dc.subjectOnline social networks
dc.subjectSocial tie-strength
dc.titleExtent prediction of the information and influence propagation in online social networks
dc.typeARTÍCULO
dc.ucuenca.afiliacionOrtiz, R., Universitat Politécnica de Catalunya (UPC), Barcelona, España; Ortiz, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionPostigo, M., Universitat Politécnica de Catalunya (UPC), Barcelona, España
dc.ucuenca.afiliacionMelús, J., Universitat Politécnica de Catalunya (UPC), Barcelona, España
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.4 Ingeniería de La Comunicación y de Sistemas
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0612 - Base de Datos, Diseno y Administración de Redes
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.correspondenciaOrtiz Gaona, Raul Marcelo, raul.ortiz@ucuenca.edu.ec
dc.ucuenca.cuartilQ2
dc.ucuenca.embargoend2050-06-12
dc.ucuenca.embargointerno2050-06-12
dc.ucuenca.factorimpacto0.537
dc.ucuenca.idautor0101574911
dc.ucuenca.idautor0000-0002-4182-7376
dc.ucuenca.idautor0000-0001-7557-2255
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://link.springer.com/journal/10588/volumes-and-issues/27-2
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 27, número 2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
documento.pdf
Size:
521.49 KB
Format:
Adobe Portable Document Format
Description:
document

Collections