SUPERVISED CLASSIFICATION PROCESSES for the CHARACTERIZATION of HERITAGE ELEMENTS, CASE STUDY: CUENCA-ECUADOR

dc.contributor.authorBriones Orellana, Juan Carlos
dc.contributor.authorHeras Barros, Veronica Cristina
dc.contributor.authorSinchi Tenesaca, Edison Roman
dc.date.accessioned2018-01-11T16:47:36Z
dc.date.available2018-01-11T16:47:36Z
dc.date.issued2017-08-28
dc.description.abstractThe proper control of built heritage entails many challenges related to the complexity of heritage elements and the extent of the area to be managed, for which the available resources must be efficiently used. In this scenario, the preventive conservation approach, based on the concept that prevent is better than cure, emerges as a strategy to avoid the progressive and imminent loss of monuments and heritage sites. Regular monitoring appears as a key tool to identify timely changes in heritage assets. This research demonstrates that the supervised learning model (Support Vector Machines - SVM) is an ideal tool that supports the monitoring process detecting visible elements in aerial images such as roofs structures, vegetation and pavements. The linear, gaussian and polynomial kernel functions were tested; the lineal function provided better results over the other functions. It is important to mention that due to the high level of segmentation generated by the classification procedure, it was necessary to apply a generalization process through opening a mathematical morphological operation, which simplified the over classification for the monitored elements.
dc.description.cityOttawa
dc.identifier.doi10.5194/isprs-annals-IV-2-W2-39-2017
dc.identifier.issn21949042
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85030246902&doi=10.5194%2fisprs-annals-IV-2-W2-39-2017&partnerID=40&md5=6d12138398177f44dc1fb655276814a4
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29165
dc.language.isoen_US
dc.publisherCOPERNICUS GMBH
dc.sourceISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.subjectImagery Classification
dc.subjectMonitoring
dc.subjectMorphological Mathematic
dc.subjectPreventive Conservation
dc.subjectRoof Structures
dc.subjectSupport Vector Machines
dc.titleSUPERVISED CLASSIFICATION PROCESSES for the CHARACTERIZATION of HERITAGE ELEMENTS, CASE STUDY: CUENCA-ECUADOR
dc.typeArticle
dc.ucuenca.afiliacionbriones, j.c., universidad de cuenca, architecture and urbanism faculty, av 12 de abril and agustín cueva, cuenca, ecuador
dc.ucuenca.afiliacionheras, v., universidad de cuenca, architecture and urbanism faculty, av 12 de abril and agustín cueva, cuenca, ecuador
dc.ucuenca.afiliacionsinchi, e., universidad de cuenca, architecture and urbanism faculty, av 12 de abril and agustín cueva, cuenca, ecuador
dc.ucuenca.correspondenciaHeras, V.; Universidad de Cuenca, Architecture and Urbanism Faculty, Av 12 de Abril and Agustín Cueva, Ecuador; email: veronica.heras@ucuenca.edu.ec
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.idautor0102928009
dc.ucuenca.idautor0103092243
dc.ucuenca.idautor0105787139
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.nombrerevista26th International CIPA Symposium on Digital Workflows for Heritage Conservation 2017
dc.ucuenca.volumen4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections