Biorefinery processing of waste to supply cost-effective and sustainable inputs for two-stage microalgal cultivation

dc.contributor.authorHelms, Gregory L.
dc.contributor.authorHiscox, William
dc.contributor.authorBule, Mahesh
dc.contributor.authorWensel, Pierre C.
dc.contributor.authorChen, Shulin
dc.contributor.authorGarcía Pérez, Manuel
dc.contributor.authorKirchhoff, Helmut
dc.contributor.authorPeláez Samaniego, Manuel Raúl
dc.contributor.authorDavis, William C.
dc.date.accessioned2022-12-12T14:57:35Z
dc.date.available2022-12-12T14:57:35Z
dc.date.issued2022
dc.description.abstractOvercoming obstacles to commercialization of algal-based processes for biofuels and co-products requires not just piecemeal incremental improvements, but rather a comprehensive and fundamental re-consideration starting with the selected algae and its associated cultivation, harvesting, biomass conversion, and refinement. A novel two-stage process designed to address challenges of mass outdoor microalgal cultivation for biofuels and co-products was previously demonstrated using an oleaginous, haloalkaline-tolerant, and multi-trophic green Chlorella vulgaris. ALP2 from a soda lake. This involved cultivating the microalgae in a fermenter heterotrophically or photobioreactor mixotrophically (first-stage) to rapidly obtain high cell densities and inoculate an open-pond phototrophic culture (second-stage) featuring high levels of NaHCO3, pH, and salinity. An improved two-stage cultivation that instead sustainably used as more cheap and sustainable inputs the organic carbon, nitrogen, and phosphorous from fractionation of waste was here demonstrated in a small-scale biorefinery process. The first cultivation stage consisted of two simultaneous batch flask cultures featuring (1) mixotrophic cell productivity of 7.25 × 107 cells mL−1 day−1 on BG-110 medium supplemented with 1.587 g L−1 urea and an enzymatic hydrolysate of pre-treated (torrefaction + grinding + ozonolysis + soaking ammonia) wheat-straw that corresponded to 10 g L−1 glucose, and (2) mixotrophic cell productivity of 2.25 × 107 cells mL−1 day−1 on BG-110 medium supplemented with 1.587 g L−1 urea and a purified and de-toxified condensate of pre-treated (torrefaction + grinding) wheat straw that corresponded to 0.350 g L−1 of potassium acetate. The second cultivation stage featured 1H NMR-determined phototrophic lipid productivity of 0.045 g triacylglycerides (TAG) L−1 day−1 on BG-110 medium supplemented with 16.8 g L−1 NaHCO3 and fed batch-added 22% (v/v) anaerobically digested food waste effluent at HCl-mediated pH 9.</jats:p>
dc.identifier.doi10.3390/app12031485
dc.identifier.issn2076-3417
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40452
dc.identifier.urihttps://api.elsevier.com/content/abstract/scopus_id/85123718385
dc.language.isoes_ES
dc.sourceApplied Sciences (Switzerland)
dc.subjectInstrumentation
dc.subjectAlgae
dc.subjectFood and lignocellulosic waste
dc.subjectAnaerobic digestion
dc.subjectBiorefinery
dc.subjectEnzyme hydrolysis
dc.subjectTorrefaction
dc.subjectComputer science applications
dc.subjectFluid flow and transfer processes
dc.subjectGeneral engineering
dc.subjectGeneral materials science
dc.subjectProcess chemistry and technology
dc.titleBiorefinery processing of waste to supply cost-effective and sustainable inputs for two-stage microalgal cultivation
dc.typeARTÍCULO
dc.ucuenca.afiliacionBule, M., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionWensel, P., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionKirchhoff, H., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionChen, S., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionDavis, W., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionHelms, G., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionHiscox, W., University of Washington, Seattle, Estados unidos
dc.ucuenca.afiliacionPelaez, M., Washington State University, Washington, Estados unidos; Pelaez, M., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionGarcia, M., University of Washington, Seattle, Estados unidos
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.6.12 Botánica
dc.ucuenca.areaconocimientofrascatiespecifico1.6 Ciencias Biológicas
dc.ucuenca.areaconocimientounescoamplio08 - Agricultura, Silvicultura, Pesca y Veterinaria
dc.ucuenca.areaconocimientounescodetallado0841 - Veterinaria
dc.ucuenca.areaconocimientounescoespecifico084 - Veterinaria
dc.ucuenca.correspondenciaWensel, Pierre C., pierrewensel@gmail.com
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.51
dc.ucuenca.idautor0000-0001-5874-3681
dc.ucuenca.idautor0000-0002-9386-2632
dc.ucuenca.idautor0000-0002-7765-1165
dc.ucuenca.idautor0000-0002-0522-0884
dc.ucuenca.idautor0000-0002-9353-2123
dc.ucuenca.idautor0301219309
dc.ucuenca.idautor0000-0002-3503-1654
dc.ucuenca.idautor0000-0002-3814-0258
dc.ucuenca.idautor0000-0003-4173-0416
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/2076-3417/12/3
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 12, número 23

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
4.95 MB
Format:
Adobe Portable Document Format
Description:
document

Collections