Do mixing models with different input requirement yield similar streamflow source contributions? Case study: a tropical montane catchment

dc.contributor.authorTimbe Castro, Edison Patricio
dc.contributor.authorCrespo Sánchez, Patricio Javier
dc.contributor.authorMora Abril, Enmita Lucía
dc.contributor.authorRamón Flores, Jorge David
dc.contributor.authorCorrea Barahona, Alicia Beatriz
dc.contributor.authorMosquera Rojas, Giovanny Mauricio
dc.date.accessioned2021-10-07T20:03:25Z
dc.date.available2021-10-07T20:03:25Z
dc.date.issued2021
dc.descriptionHydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.
dc.description.abstractHydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.
dc.identifier.doi10.1002/hyp.13814
dc.identifier.issn0885-6087
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/36909
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/hyp.14209
dc.language.isoes_ES
dc.sourceHydrological Processes
dc.subjectStreamflow
dc.subjectTracers
dc.subjectMixing models
dc.subjectHeadwater catchment
dc.subjectTropical montane páramo
dc.titleDo mixing models with different input requirement yield similar streamflow source contributions? Case study: a tropical montane catchment
dc.typeARTÍCULO
dc.ucuenca.afiliacionCrespo, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Crespo, P., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionMora, E., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Mora, E., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionMosquera, G., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Mosquera, G., Universidad San Francisco de Quito, Quito , Ecuador; Mosquera, G., University of Giessen, Giessen, Alemania
dc.ucuenca.afiliacionTimbe, E., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Timbe, E., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionCorrea, A., Universidad Justus Liebig Giessen, Giessen, Alemania; Correa, A., Universidad de Costa Rica, San Jose, Costa rica
dc.ucuenca.afiliacionRamón, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaCrespo Sanchez, Patricio Javier, patricio.crespo@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.222
dc.ucuenca.idautor0104450911
dc.ucuenca.idautor0102572773
dc.ucuenca.idautor0102843554
dc.ucuenca.idautor0104888128
dc.ucuenca.idautor0301289963
dc.ucuenca.idautor0104857610
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://onlinelibrary.wiley.com/toc/10991085/2021/35/6
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 35, número 6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
449.35 KB
Format:
Adobe Portable Document Format
Description:
document

Collections