Improving stochastic modelling of daily rainfall using the ENSO index: Model development and application in Chile

dc.contributor.authorUrdiales, Diego Hernán
dc.contributor.authorMeza, Francisco
dc.contributor.authorGironás, Jorge A.
dc.contributor.authorGilabert, Horacio B.
dc.date.accessioned2019-08-06T17:19:01Z
dc.date.available2019-08-06T17:19:01Z
dc.date.issued2018
dc.descriptionStochastic weather simulation, or weather generators (WGs), have gained a wide acceptance and been used for a variety of purposes, including climate change studies and the evaluation of climate variability and uncertainty effects. The two major challenges in WGs are improving the estimation of interannual variability and reducing overdispersion in the synthetic series of simulated weather. The objective of this work is to develop a WG model of daily rainfall, incorporating a covariable that accounts for interannual variability, and apply it in three climate regions (arid, Mediterranean, and temperate) of Chile. Precipitation occurrence was modeled using a two-stage, first-order Markov chain, whose parameters are fitted with a generalized lineal model (GLM) using a logistic function. This function considers monthly values of the observed Sea Surface Temperature Anomalies of the Region 3.4 of El Niño-Southern Oscillation (ENSO index) as a covariable. Precipitation intensity was simulated with a mixed exponential distribution, fitted using a maximum likelihood approach. The stochastic simulation shows that the application of the approach to Mediterranean and arid climates largely eliminates the overdispersion problem, resulting in a much improved interannual variability in the simulated values. © 2018 by the authors.
dc.description.abstractStochastic weather simulation, or weather generators (WGs), have gained a wide acceptance and been used for a variety of purposes, including climate change studies and the evaluation of climate variability and uncertainty effects. The two major challenges in WGs are improving the estimation of interannual variability and reducing overdispersion in the synthetic series of simulated weather. The objective of this work is to develop a WG model of daily rainfall, incorporating a covariable that accounts for interannual variability, and apply it in three climate regions (arid, Mediterranean, and temperate) of Chile. Precipitation occurrence was modeled using a two-stage, first-order Markov chain, whose parameters are fitted with a generalized lineal model (GLM) using a logistic function. This function considers monthly values of the observed Sea Surface Temperature Anomalies of the Region 3.4 of El Niño-Southern Oscillation (ENSO index) as a covariable. Precipitation intensity was simulated with a mixed exponential distribution, fitted using a maximum likelihood approach. The stochastic simulation shows that the application of the approach to Mediterranean and arid climates largely eliminates the overdispersion problem, resulting in a much improved interannual variability in the simulated values. © 2018 by the authors.
dc.identifier.doi
dc.identifier.issn2073-4441
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/33284
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85041459217&doi=10.3390%2fw10020145&origin=inward&txGid=6f2d674c56fe554c112b1c2ebf9210db
dc.language.isoes_ES
dc.sourceWater
dc.subjectChile
dc.subjectDaily Precipitation
dc.subjectEnso Index
dc.subjectGeneralized Lineal Model
dc.subjectMixed Exponential Distribution
dc.subjectStochastic Simulation
dc.titleImproving stochastic modelling of daily rainfall using the ENSO index: Model development and application in Chile
dc.typeARTÍCULO
dc.ucuenca.afiliacionUrdiales, D., Pontificia Universidad Católica de Chile, Santiago, Chile; Urdiales, D., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionMeza, F., Pontificia Universidad Católica de Chile, Santiago, Chile
dc.ucuenca.afiliacionGironás, J., Pontificia Universidad Católica de Chile, Santiago, Chile
dc.ucuenca.afiliacionGilabert, H., Pontificia Universidad Católica de Chile, Santiago, Chile
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.7.1 Ingeniería Ambiental y Geológica
dc.ucuenca.areaconocimientofrascatiespecifico2.7 Ingeniería del Medio Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaUrdiales, Diego Hernán, dhurdiales@uc.cl
dc.ucuenca.idautor0104180773
dc.ucuenca.idautorSgrp-1896-2
dc.ucuenca.idautorSgrp-1896-3
dc.ucuenca.idautorSgrp-1896-4
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/water
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 10

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format
Description:
document

Collections