Radiomics Diagnostic Tool Based on Deep Learning for Colposcopy Image Classification

dc.contributor.authorDávila Sacoto, Santiago Arturo
dc.contributor.authorJiménez Gaona, Yuliana
dc.contributor.authorVicuña, María José
dc.contributor.authorVerhoeven, Veronique M.
dc.contributor.authorNeira Molina, Vivian Alejandra
dc.contributor.authorCastillo Malla, Darwin Patricio
dc.contributor.authorVega Crespo, Bernardo José
dc.date.accessioned2023-01-23T20:16:16Z
dc.date.available2023-01-23T20:16:16Z
dc.date.issued2022
dc.description.abstractBackground: Colposcopy imaging is widely used to diagnose, treat and follow-up on premalignant and malignant lesions in the vulva, vagina, and cervix. Thus, deep learning algorithms are being used widely in cervical cancer diagnosis tools. In this study, we developed and preliminarily validated a model based on the Unet network plus SVM to classify cervical lesions on colposcopy images. Methodology: Two sets of images were used: the Intel & Mobile ODT Cervical Cancer Screening public dataset, and a private dataset from a public hospital in Ecuador during a routine colposcopy, after the application of acetic acid and lugol. For the latter, the corresponding clinical information was collected, specifically cytology on the PAP smear and the screening of human papillomavirus testing, prior to colposcopy. The lesions of the cervix or regions of interest were segmented and classified by the Unet and the SVM model, respectively. Results: The CAD system was evaluated for the ability to predict the risk of cervical cancer. The lesion segmentation metric results indicate a DICE of 50%, a precision of 65%, and an accuracy of 80%. The classification results’ sensitivity, specificity, and accuracy were 70%, 48.8%, and 58%, respectively. Randomly, 20 images were selected and sent to 13 expert colposcopists for a statistical comparison between visual evaluation experts and the CAD tool (p-value of 0.597). Conclusion: The CAD system needs to improve but could be acceptable in an environment where women have limited access to clinicians for the diagnosis, follow-up, and treatment of cervical cancer; better performance is possible through the exploration of other deep learning methods with larger datasets.
dc.identifier.doi10.3390/diagnostics12071694
dc.identifier.issn2075-4418
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40832
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85137351772&doi=10.3390%2fdiagnostics12071694&origin=inward&txGid=019aacd41c1d9887ad3ede82fdf02a41
dc.language.isoes_ES
dc.sourceDiagnostics
dc.subjectCervical coloscopy
dc.subjectUnet
dc.subjectLesion classification
dc.subjectDeep learning
dc.titleRadiomics Diagnostic Tool Based on Deep Learning for Colposcopy Image Classification
dc.typeARTÍCULO
dc.ucuenca.afiliacionVega, B., Universidad de Cuenca, Facultad de Ciencias Médicas, Cuenca, Ecuador
dc.ucuenca.afiliacionJiménez, Y., Universidad Técnica Particular de Loja, Loja, Ecuador; Jiménez, Y., Universitat Politècnica de València, Valencia, España; Jiménez, Y., University of Waterloo, Waterloo, Canada
dc.ucuenca.afiliacionVerhoeven, V., Universidad de Amberes (University of Antwerp), Amberes, Belgica
dc.ucuenca.afiliacionDavila, S., Universidad de Cuenca, Facultad de Ciencias Médicas, Cuenca, Ecuador
dc.ucuenca.afiliacionNeira, V., Universidad de Cuenca, Facultad de Ciencias Médicas, Cuenca, Ecuador
dc.ucuenca.afiliacionVicuña, M., Universidad de Cuenca, Facultad de Ciencias Médicas, Cuenca, Ecuador
dc.ucuenca.afiliacionCastillo, D., Universidad Técnica Particular de Loja, Loja, Ecuador; Castillo, D., Universidad Politécnica de Madrid, Madrid, España; Castillo, D., University of Waterloo, Waterloo, Canada
dc.ucuenca.areaconocimientofrascatiamplio3. Ciencias Médicas y de la Salud
dc.ucuenca.areaconocimientofrascatidetallado3.2.2 Ginecología y Obstetricia
dc.ucuenca.areaconocimientofrascatiespecifico3.2 Medicina Clínica
dc.ucuenca.areaconocimientounescoamplio09 - Salud y Bienestar
dc.ucuenca.areaconocimientounescodetallado0914 - Tecnologías de Diagnóstico y Tratamiento Médico
dc.ucuenca.areaconocimientounescoespecifico091 - Salud
dc.ucuenca.correspondenciaVega Crespo, Bernardo Jose, bernardo.vegac@ucuenca.edu.ec
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.658
dc.ucuenca.idautor0000-0002-3708-6501
dc.ucuenca.idautor0000-0001-7155-5546
dc.ucuenca.idautor0000-0002-1800-1189
dc.ucuenca.idautor0102146917
dc.ucuenca.idautor0000-0001-5829-9955
dc.ucuenca.idautor0301630802
dc.ucuenca.idautor0104947700
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 12, número 7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format
Description:
document

Collections