Optimization of X-Band radar rainfall retrieval in the southern Andes of Ecuador using a random forest model

dc.contributor.authorOrellana Alvear, Johanna Marlene
dc.contributor.authorBendix, Jorg
dc.contributor.authorRollenbeck,, Rütger T
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.date.accessioned2020-05-12T00:21:50Z
dc.date.available2020-05-12T00:21:50Z
dc.date.issued2019
dc.descriptionDespite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars.
dc.description.abstractDespite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars.
dc.identifier.doi10.3390/rs11141632
dc.identifier.issn2072-4292
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/34267
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070705080&origin=inward
dc.language.isoes_ES
dc.sourceRemote Sensing
dc.subjectRadar
dc.subjectMountain region
dc.subjectRadar
dc.subjectRainfall retrieval
dc.subjectX-band
dc.subjectAndes
dc.subjectMachine-learning
dc.subjectMachine-learning
dc.subjectX-band
dc.subjectAndes
dc.subjectX-band
dc.subjectRainfall retrieval
dc.subjectAndes
dc.subjectMachine-learning
dc.subjectMountain region
dc.subjectRainfall retrieval
dc.subjectRadar
dc.subjectMountain region
dc.titleOptimization of X-Band radar rainfall retrieval in the southern Andes of Ecuador using a random forest model
dc.typeARTÍCULO
dc.ucuenca.afiliacionRollenbeck,, R., University of Marburg, Marburg, Alemania
dc.ucuenca.afiliacionOrellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., University of Marburg, Marburg, Alemania
dc.ucuenca.afiliacionCelleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionBendix, J., University of Marburg, Marburg, Alemania
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaOrellana Alvear, Johanna Marlene, johanna.orellana@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.43
dc.ucuenca.idautor0602794406
dc.ucuenca.idautorSgrp-2895-4
dc.ucuenca.idautor0104162268
dc.ucuenca.idautorSgrp-2895-3
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/remotesensing
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 11, Número 14

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
5.84 MB
Format:
Adobe Portable Document Format
Description:
document

Collections