Forecasting of a complex phenomenon using stochastic data-based techniques under non-conventional schemes: the SARS-CoV-2 virus spread case

dc.contributor.authorGuaman Mendoza, Daniel Eduardo
dc.contributor.authorOchoa Sanchez, Ana Elizabeth
dc.contributor.authorSamaniego Alvarado, Esteban Patricio
dc.date.accessioned2022-07-25T16:17:50Z
dc.date.available2022-07-25T16:17:50Z
dc.date.issued2022
dc.description
dc.description.abstractEpidemics are complex dynamical processes that are difficult to model. As revealed by the SARS-CoV-2 pandemic, the social behavior and policy decisions contribute to the rapidly changing behavior of the virus' spread during outbreaks and recessions. In practice, reliable forecasting estimations are needed, especially during early contagion stages when knowledge and data are insipient. When stochastic models are used to address the problem, it is necessary to consider new modeling strategies. Such strategies should aim to predict the different contagious phases and fast changes between recessions and outbreaks. At the same time, it is desirable to take advantage of existing modeling frameworks, knowledge and tools. In that line, we take Autoregressive models with exogenous variables (ARX) and Vector autoregressive (VAR) techniques as a basis. We then consider analogies with epidemic's differential equations to define the structure of the models. To predict recessions and outbreaks, the possibility of updating the model's parameters and stochastic structures is considered, providing non-stationarity properties and flexibility for accommodating the incoming data to the models. The Generalized-Random-Walk (GRW) and the State-Dependent-Parameter (SDP) techniques shape the parameters' variability. The stochastic structures are identified following the Akaike (AIC) criterion. The models use the daily rates of infected, death, and healed individuals, which are the most common and accurate data retrieved in the early stages. Additionally, different experiments aim to explore the individual and complementary role of these variables. The results show that although both the ARX-based and VAR-based techniques have good statistical accuracy for seven-day ahead predictions, some ARX models can anticipate outbreaks and recessions. We argue that short-time predictions for complex problems could be attained through stochastic models that mimic the fundamentals of dynamic equations, updating their parameters and structures according to incoming data.
dc.identifier.doi10.1016/j.chaos.2022.112097
dc.identifier.issn0960-0779
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2022.112097
dc.language.isoes_ES
dc.sourceChaos, Solitons & Fractals
dc.subjectApplied mathematics
dc.subjectGeneral mathematics
dc.subjectGeneral physics and astronomy
dc.subjectStatistical and nonlinear physics
dc.titleForecasting of a complex phenomenon using stochastic data-based techniques under non-conventional schemes: the SARS-CoV-2 virus spread case
dc.typeARTÍCULO
dc.ucuenca.afiliacionGuaman, D., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionOchoa, A., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionSamaniego, E., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.11.2 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientofrascatiespecifico2.11 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0711 - Ingeniería y Procesos Químicos
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaGuaman Mendoza, Daniel Eduardo, daniel.mendoza@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.647
dc.ucuenca.idautor0105088470
dc.ucuenca.idautor0104162243
dc.ucuenca.idautor0102052594
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.journals.elsevier.com/chaos-solitons-and-fractals
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 158

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
3.14 MB
Format:
Adobe Portable Document Format
Description:
document

Collections