A Variational merging approach to the spatial description of environmental variables

Abstract

High resolution images of environmental variables are highly valuable sources of information in research and environmental management. Obtaining spatially continuous information from ground observations is challenging due to the wide variety of factors that affect classical interpolation methods. While geostatistical methods have produced noteworthy results, they generally rely on important assumptions and strongly depend on the availability of observed data. In turn, satellite‐based or model‐based gridded images generally represent the global spatial structure of environmental variables, but are subject to bias. With the objective of exploiting the benefits of both sources of information, we propose a new mathematical formulation to merge observed data with gridded images of environmental variables using partial differential equations in a variational setting. With a …

Resumen

Se propone una técnica basada en principios variacionales para la integración de imágenes satelitales y mapas de resultados de modelos de clima con observaciones de campo. El enfoque adopatado permite evitar restricciones que imponen los métodos geoestadísticos.

Keywords

Image Enhancement, Mapping, Merging Methods, Variational Formulation

Citation

Código de tesis

Código de tesis

Grado Académico

Director de tesis

Enlace al documento

Collections