A Machine Learning Approach for Blood Glucose Level Prediction Using a LSTM Network

dc.contributor.authorPineda Molina, Maria Gabriela
dc.date.accessioned2023-01-12T16:43:19Z
dc.date.available2023-01-12T16:43:19Z
dc.date.issued2022
dc.description.abstractDiabetes is a chronic disease characterized by the elevation of glucose in blood resulting in multiple organ failure in the body. There are three types of diabetes: type 1, type 2, and gestational diabetes. Type 1 diabetes (T1D) is an autoimmune disease where insulin-producing cells are destroyed. World Health Organization latest reports indicate T1D prevalence is increasing worldwide with approximately one million new cases annually. Consequently, numerous models to predict blood glucose levels have been proposed, some of which are based on Recurrent Neural Networks (RNNs). The study presented here proposes the training of a machine learning model to predict future glucose levels with high precision using the OhioT1DM database and a Long Short-Term Memory (LSTM) network. Three variations of the dataset were used; the first one with original unprocessed data, another processed with linear interpolation, and a last one processed with a time series method. The datasets obtained were split into time prediction horizons (PH) of 5, 30, and 60 min and then fed into the proposed model. From the three variations of datasets, the one processed with time series obtained the highest prediction accuracy, followed by the one processed with linear interpolation. This study will open new ways for addressing healthcare issues related to glucose forecasting in diabetic patients, helping to avoid concomitant complications such as severe episodes of hyperglycemia
dc.description.cityQuito
dc.identifier.doi10.1007/978-3-030-99170-8_8
dc.identifier.isbn978-303099169-2
dc.identifier.issn1865-0929
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40698
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85128460035&doi=10.1007%2f978-3-030-99170-8_8&origin=inward&txGid=ae800c4ad5463bb3384a0240b138795b
dc.language.isoes_ES
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.sourceCommunications in Computer and Information Science
dc.subjectTime series
dc.titleA Machine Learning Approach for Blood Glucose Level Prediction Using a LSTM Network
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionGonzales, F., Yachay Tech, Yachay, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio3. Ciencias Médicas y de la Salud
dc.ucuenca.areaconocimientofrascatidetallado3.2.29 Medicina General e Interna
dc.ucuenca.areaconocimientofrascatiespecifico3.2 Medicina Clínica
dc.ucuenca.areaconocimientounescoamplio09 - Salud y Bienestar
dc.ucuenca.areaconocimientounescodetallado0912 - Medicina
dc.ucuenca.areaconocimientounescoespecifico091 - Salud
dc.ucuenca.comiteorganizadorconferenciaUniversidad Politécnica Salesiana, Ecuador
dc.ucuenca.conferencia2nd International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2021
dc.ucuenca.correspondenciaGómez Castillo, Nayeli Yajaira, nayeli.gomez@yachaytech.edu.ec
dc.ucuenca.cuartilQ4
dc.ucuenca.factorimpacto0.21
dc.ucuenca.fechafinconferencia2021-12-03
dc.ucuenca.fechainicioconferencia2021-12-01
dc.ucuenca.idautor0000-0002-0958-6293
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaUniversidad Politécnica Salesiana, Ecuador
dc.ucuenca.paisECUADOR
dc.ucuenca.urifuentehttps://www.springer.com/series/7899
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 1532

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
437.38 KB
Format:
Adobe Portable Document Format
Description:
document

Collections