The effect of land-use changes on the hydrological behaviour of histic andosols in south Ecuador

dc.contributor.authorBuytaert, Wouter
dc.contributor.authorWyseure, Guido
dc.contributor.authorBievre, Bert De
dc.contributor.authorDeckers, Jozef
dc.date.accessioned2015-06-12T13:31:33Z
dc.date.available2015-06-12T13:31:33Z
dc.date.issued2005-12
dc.description.abstractThe south Ecuadorian Andean mountain belt between 3500 and 4500 m altitude is covered by a highly endemic and fragile ecosystem called paramo. The Histic Andosols covering this regi ´ on have highly developed hydric properties and exert a key function in the hydrological regulation of the paramo ecosystem. Unlike most Andosols, their extreme ´water retention capacity is not due to the presence of typical minerals such as allophane or imogolite. Although these minerals are virtually absent, the large organic carbon content, due to organometallic complexation, gives rise to similar properties. The water content at 1500 kPa can exceed 2000 g kg 1, and the high hydraulic conductivity at saturation (about 15 mm h 1) drops sharply when low suction is applied. The three methods applied, i.e. the inverted auger hole, the tension infiltrometer and the constant-head permeameter method, give very similar results. The paramo ´is characterized by a slow hydrological response and a good water regulation, caused by the combination of a high water storage capacity and high conductivity. The wide pore size distribution of the organometallic complexes results in a water retention curve that differs significantly from the classic Mualem–Van Genuchten description, but can better be described with a simple linear or semilogarithmic model. The soils investigated are very prone to irreversible structural changes caused by land-use changes. The conversion of natural land for cultivation has a large impact on the hydrological function of the region. The water storage capacity increases by 5 to 30%, and the hydraulic conductivity is 31% higher in cultivated catchments. These changes are related to a larger peak flow, a smaller base flow and generally a smaller discharge buffering capacity, despite the higher storage capacity. Copyright  2005 John Wiley & Sons, Ltdes_ES
dc.description.numberSequencevolumen 19; número 20es_ES
dc.formatapplication/pdfes_ES
dc.identifier.doidoi: 10.1002/hyp.5867
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/22121
dc.language.isoenges_ES
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/
dc.subjectParamoes_ES
dc.subjectAndosolses_ES
dc.subjectRunoff Responsees_ES
dc.subjectInfiltrationes_ES
dc.subjectWater Retentiones_ES
dc.subjectLand-Use Changeses_ES
dc.subjectHydraulic Conductivityses_ES
dc.titleThe effect of land-use changes on the hydrological behaviour of histic andosols in south Ecuadores_ES
dc.title.alternativeHydrological Processeses_ES
dc.typeArticlees_ES
dc.ucuenca.paginacionPáginas 3985-3997es_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
scopus 181.pdf
Size:
291.45 KB
Format:
Adobe Portable Document Format
Description:
texto completo

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.88 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections