Evolutionary bi-objective optimization for the electric vehicle charging stand infrastructure problem

dc.contributor.authorArmas, Rolando
dc.date.accessioned2023-01-23T16:57:35Z
dc.date.available2023-01-23T16:57:35Z
dc.date.issued2022
dc.description.abstractThis article reports using a bi-objective evolutionary algorithm interacting with a traffic simulator and data exploration methods to analyze the optimal capacity and location of charging infrastructure for electric vehicles. In this work, the focus of the study is the city of Cuenca, Ecuador. We configure a scenario with 20 candidate charging stations and 500 electric vehicles driving according to the mobility distribution observed in this city. We optimize the vehicle's travel time that requires recharging and the number of charging stations distributed in the city. Quality of Service is defined as the ratio of charged vehicles to vehicles waiting for a charge and is considered a constraint. The approximate Pareto set of solutions produced in our experiments includes a number of trade-off solutions to the formulated problem and shows that the evolutionary approach is a practical tool to find and study different layouts related to the location and capacities of charging stations. In addition, we complement the analysis of results by considering Quality of Service, charging time, and energy to determine the city's best locations. The proposed framework that combines simulated scenarios with evolutionary algorithms is a powerful tool to analyze and understand different charging station infrastructure designs.
dc.description.cityBoston
dc.identifier.doi10.1145/3512290.3528859
dc.identifier.isbn978-145039237-2
dc.identifier.issn0000-000
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40825
dc.identifier.urihttps://dl.acm.org/doi/abs/10.1145/3512290.3528859
dc.language.isoes_ES
dc.publisherAssociation for Computing Machinery
dc.sourceACM Digital Library
dc.subjectEvolutionary algorithms
dc.titleEvolutionary bi-objective optimization for the electric vehicle charging stand infrastructure problem
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionAguirre, H., Shinshu University, Nagano, Japon
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0714 - Electrónica y Automatización
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.comiteorganizadorconferenciaMarkus Wagner, The University of Adelaide, Jonathan Edward Fieldsend, University of Exeter y Erik Hemburg, Massachusetts Institute of Technology
dc.ucuenca.conferencia2022 Genetic and Evolutionary Computation Conference
dc.ucuenca.correspondenciaArmas, Rolando, tarmas@yachaytech.edu.ec
dc.ucuenca.embargoend2022-12-30
dc.ucuenca.embargointerno2022-12-30
dc.ucuenca.fechafinconferencia2022-07-13
dc.ucuenca.fechainicioconferencia2022-07-09
dc.ucuenca.idautor0000-0001-7384-2426
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaAssociation for Computing Machinery y SIGEVO
dc.ucuenca.paisESTADOS UNIDOS
dc.ucuenca.urifuentehttps://dl.acm.org/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 0, número 0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
354.68 KB
Format:
Adobe Portable Document Format
Description:
document

Collections