Extracting stationary segments from non-stationary synthetic and cardiac signals

dc.contributor.authorWong De Balzan, Sara
dc.date.accessioned2018-01-11T16:47:06Z
dc.date.available2018-01-11T16:47:06Z
dc.date.issued2014-10-14
dc.description.abstractPhysiological signals are commonly the result of complex interactions between systems and organs, these interactions lead to signals that exhibit a non-stationary behaviour. For cardiac signals, non-stationary heart rate variability (HRV) may produce misinterpretations. A previous work proposed to divide a non-stationary signal into stationary segments by looking for changes in the signal's properties related to changes in the mean of the signal. In this paper, we extract stationary segments from non-stationary synthetic and cardiac signals. For synthetic signals with different signal-to-noise ratio levels, we detect the beginning and end of the stationary segments and the result is compared to the known values of the occurrence of these events. For cardiac signals, RR interval (cardiac cycle length) time series, obtained from electrocardiographic records during stress tests for two populations (diabetic patients with cardiovascular autonomic neuropathy and control subjects), were divided into stationary segments. Results on synthetic signals reveal that the non-stationary sequence is divided into more stationary segments than needed. Additionally, due to HRV reduction and exercise intolerance reported on diabetic cardiovascular autonomic neuropathy patients, non-stationary RR interval sequences from these subjects can be divided into longer stationary segments compared to the control group.
dc.description.cityCartagena de Indias
dc.identifier.doi10.1117/12.2073558
dc.identifier.isbn9781628413625
dc.identifier.issn16057422
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84923040527&doi=10.1117%2f12.2073558&partnerID=40&md5=f8c926fd4d2f56c3d69b451f62e7a4ca
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/28999
dc.language.isoen_US
dc.publisherSPIE
dc.sourceProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.subjectDiabetic Cardiovascular Autonomic Neuropathy
dc.subjectHeart Rate Variability
dc.subjectNon-Stationary Time Series
dc.subjectRr Interval
dc.subjectScale Invariance
dc.subjectStatistical Analysis
dc.subjectStress Test
dc.subjectSynthetic Data Generation
dc.titleExtracting stationary segments from non-stationary synthetic and cardiac signals
dc.typeArticle
dc.ucuenca.afiliacionwong, s., grupo de bioingeniería y biofísica aplicada, universidad simon bolívar, caracas, venezuela, investigador prometeo, universidad de cuenca, ecuador
dc.ucuenca.correspondenciaAltuve, M.; Grupo de Bioingeniería y Biofísica Aplicada, Universidad Simon BolívarVenezuela
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.idautor081929618
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.nombrerevista10th International Symposium on Medical Information Processing and Analysis
dc.ucuenca.numerocitaciones2
dc.ucuenca.volumen9287

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections