Seismic response of steel moment frame considering gravity system and column base flexibility

dc.contributor.authorTorres Rodas, Pablo Andres
dc.contributor.authorFlores Solano, Francisco Xavier
dc.contributor.authorZareian, Farzin
dc.date.accessioned2020-10-27T05:15:09Z
dc.date.available2020-10-27T05:15:09Z
dc.date.issued2018
dc.descriptionHigh ductility and architectural versatility characteristics make Steel Moment Frames (SMF) one of the most commonly used lateral resisting systems for building structures. Collapse assessment of such buildings are typically suffering from two modeling simplifications: 1) neglecting the gravity system model, and 2) neglecting column base flexibility by using idealized boundary conditions (i.e. fix or pin). This study assesses the seismic performance of an 8-Story SMF and takes into consideration the effects of the column-base flexibility and the inclusion of the gravity system in such assessment. The flexibility of the column-base connection is included by aggregating deformations of various components of the base connection while the gravity system is included by taken into consideration the continuous stiffness provided by the gravity columns. Nonlinear dynamic response history analysis using design level ground motions was used to compare the influence of the different properties on the story drifts and residual displacements. Moreover, using the FEMA P-695 methodology, the influence of these modeling simplifications on the collapse performance is established. Previous research indicates that the flexibility of column bases has a detrimental effect on the building's seismic performance. However, the positive effects that considering the gravity system brings evens out in the seismic behavior of the structure. © Copyright 2018 by Earthquake Engineering Research Institute All rights reserved.
dc.description.abstractHigh ductility and architectural versatility characteristics make Steel Moment Frames (SMF) one of the most commonly used lateral resisting systems for building structures. Collapse assessment of such buildings are typically suffering from two modeling simplifications: 1) neglecting the gravity system model, and 2) neglecting column base flexibility by using idealized boundary conditions (i.e. fix or pin). This study assesses the seismic performance of an 8-Story SMF and takes into consideration the effects of the column-base flexibility and the inclusion of the gravity system in such assessment. The flexibility of the column-base connection is included by aggregating deformations of various components of the base connection while the gravity system is included by taken into consideration the continuous stiffness provided by the gravity columns. Nonlinear dynamic response history analysis using design level ground motions was used to compare the influence of the different properties on the story drifts and residual displacements. Moreover, using the FEMA P-695 methodology, the influence of these modeling simplifications on the collapse performance is established. Previous research indicates that the flexibility of column bases has a detrimental effect on the building's seismic performance. However, the positive effects that considering the gravity system brings evens out in the seismic behavior of the structure. © Copyright 2018 by Earthquake Engineering Research Institute All rights reserved.
dc.description.cityLos Angeles
dc.identifier.isbn978-151087325-4
dc.identifier.issn0000-0000
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085478801&partnerID=40&md5=4f8759f3cbafa2ab68d362ce0229b0ad
dc.language.isoes_ES
dc.publisherEarthquake Engineering Research Institute
dc.sourceProceeding 11th National Conference on Earthquake Engineering 2018
dc.subjectEarthquake engineering
dc.subjectEngineering geology
dc.subjectSeismic waves
dc.titleSeismic response of steel moment frame considering gravity system and column base flexibility
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionTorres, P., University of California, Berkeley, Berkeley, Estados unidos
dc.ucuenca.afiliacionFlores, F., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionZareian, F., University of California, Berkeley, Berkeley, Estados unidos
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.1.2 Ingeniería Arquitectónica
dc.ucuenca.areaconocimientofrascatiespecifico2.1 Ingeniería Civil
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0732 - Construcción e Ingeniería Civil
dc.ucuenca.areaconocimientounescoespecifico073 - Arquitectura y Construcción
dc.ucuenca.comiteorganizadorconferenciaHeidi Tremayne,David Cocke,Mary Comerio,David Friedman,Marshall Lew, Amec Foster Wheeler,Jim Malley,Farzad Naeim,Lelli Van den Einde.
dc.ucuenca.conferencia11th National Conference on Earthquake Engineering 2018, NCEE 2018: Integrating Science, Engineering, and Policy
dc.ucuenca.embargoend2050-08-20
dc.ucuenca.embargointerno2050-08-20
dc.ucuenca.fechafinconferencia2018-06-29
dc.ucuenca.fechainicioconferencia2018-06-25
dc.ucuenca.idautor0103305769
dc.ucuenca.idautor0301547410
dc.ucuenca.idautorSgrp-3223-1
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaEarthquake Engineering Research Institute
dc.ucuenca.paisESTADOS UNIDOS
dc.ucuenca.urifuentehttp://toc.proceedings.com/41655webtoc.pdf
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 12

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
documento.pdf
Size:
252.57 KB
Format:
Adobe Portable Document Format
Description:
document

Collections