Historical developments of pyrolysis reactors: a review

dc.contributor.authorGarcía Núñez, Jesús Alberto
dc.contributor.authorPeláez Samaniego, Manuel Raúl
dc.contributor.authorGarcía Pérez, Martha Estrella
dc.contributor.authorFonts, Isabel
dc.contributor.authorÁbrego, Javier
dc.contributor.authorWesterhof, Roel
dc.contributor.authorGarcía Pérez, Manuel
dc.date.accessioned2019-08-06T14:08:59Z
dc.date.available2019-08-06T14:08:59Z
dc.date.issued2017
dc.descriptionThis paper provides a review of pyrolysis technologies, focusing on reactor designs and companies commercializing these technologies. The renewed interest in pyrolysis is driven by the potential to convert lignocellulosic materials into bio-oil and biochar and the use of these intermediates for the production of biofuels, biochemicals, and engineered biochars for environmental services. This review presents slow, intermediate, fast, and microwave pyrolysis as complementary technologies that share some commonalities in their designs. While slow pyrolysis technologies (traditional carbonization kilns) use wood trunks to produce char chunks for cooking, fast pyrolysis systems process small particles to maximize bio-oil yield. The realization of the environmental issues associated with the use of carbonization technologies and the technical difficulties of operating fast pyrolysis reactors using sand as the heating medium and large volumes of carrier gas, as well as the problems with refining the resulting highly oxygenated oils, are forcing the thermochemical conversion community to rethink the design and use of these reactors. Intermediate pyrolysis reactors (also known as converters) offer opportunities for the large-scale balanced production of char and bio-oil. The capacity of these reactors to process forest and agricultural wastes without much preprocessing is a clear advantage. Microwave pyrolysis is an option for modular small autonomous devices for solid waste management. Herein, the evolution of pyrolysis technology is presented from a historical perspective; thus, old and new innovative designs are discussed together.
dc.description.abstractThis paper provides a review of pyrolysis technologies, focusing on reactor designs and companies commercializing these technologies. The renewed interest in pyrolysis is driven by the potential to convert lignocellulosic materials into bio-oil and biochar and the use of these intermediates for the production of biofuels, biochemicals, and engineered biochars for environmental services. This review presents slow, intermediate, fast, and microwave pyrolysis as complementary technologies that share some commonalities in their designs. While slow pyrolysis technologies (traditional carbonization kilns) use wood trunks to produce char chunks for cooking, fast pyrolysis systems process small particles to maximize bio-oil yield. The realization of the environmental issues associated with the use of carbonization technologies and the technical difficulties of operating fast pyrolysis reactors using sand as the heating medium and large volumes of carrier gas, as well as the problems with refining the resulting highly oxygenated oils, are forcing the thermochemical conversion community to rethink the design and use of these reactors. Intermediate pyrolysis reactors (also known as converters) offer opportunities for the large-scale balanced production of char and bio-oil. The capacity of these reactors to process forest and agricultural wastes without much preprocessing is a clear advantage. Microwave pyrolysis is an option for modular small autonomous devices for solid waste management. Herein, the evolution of pyrolysis technology is presented from a historical perspective; thus, old and new innovative designs are discussed together.
dc.identifier.doi10.1021/acs.energyfuels.7b00641
dc.identifier.issn1520-5029
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acs.energyfuels.7b00641
dc.language.isoes_ES
dc.sourceEnergy & Fuels
dc.subjectPYROLYSIS REACTORS
dc.titleHistorical developments of pyrolysis reactors: a review
dc.typeARTÍCULO
dc.ucuenca.afiliacionGarcía, J., Colombian Oil Palm Research Center (Bogotá), Bogotá, Colombia
dc.ucuenca.afiliacionPeláez, M., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionGarcía, M., Universidad Michoacana de San Nicolás de Hidalgo (Morelia), Morelia, Mexico
dc.ucuenca.afiliacionFonts, I., Universidad de Zaragoza, Zaragoza, España
dc.ucuenca.afiliacionÁbrego, J., Universidad de Zaragoza, Zaragoza, España
dc.ucuenca.afiliacionWesterhof, R., University of Twente, Enschede, Holanda
dc.ucuenca.afiliacionGarcía, M., Washington State University, Washington, Estados unidos
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.4.2 Ingeniería de Procesos Químicos
dc.ucuenca.areaconocimientofrascatiespecifico2.4 Ingeniería Química
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaGarcía Pérez, Martha Estrella, mgarcia-perez@wsu.edu
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.04
dc.ucuenca.idautorSgrp-485-1
dc.ucuenca.idautor0301219309
dc.ucuenca.idautorSgrp-485-3
dc.ucuenca.idautorSgrp-485-4
dc.ucuenca.idautorSgrp-485-5
dc.ucuenca.idautorSgrp-485-6
dc.ucuenca.idautorSgrp-485-7
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones12362
dc.ucuenca.urifuentehttps://pubs.acs.org/journal/enfuem
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 31, número 6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
4.08 MB
Format:
Adobe Portable Document Format
Description:
document

Collections