Predictive Power Fluctuation Mitigation in Grid-Connected PV Systems with Rapid Response to EV charging stations

dc.contributor.authorVilla Ávila, Edisson Andrés
dc.date.accessioned2024-03-18T17:23:24Z
dc.date.available2024-03-18T17:23:24Z
dc.date.issued2024
dc.description.abstractCurrently, renewable energy and electric vehicle charging stations are essential for energy sustainability. However, the variable generation from renewable sources, such as photovoltaic systems, can lead to power peaks that impact the stability of the grid. This challenge is exacerbated by the increasing demand for fast-charging stations. Addressing these demand peaks is crucial to ensuring the stability of the electrical grid. This paper introduces the predictive-flex smoother, an innovative method designed to mitigate power fluctuations in grid-connected photovoltaic systems while optimizing energy management in electric vehicle charging stations. The predictive-flex smoother method incorporates a hybrid energy storage system comprising supercapacitors and vanadium redox flow batteries to respond rapidly to electric vehicle charging station demands, enhance grid electricity purchase optimization, and improve energy quality delivery. The proposed method integrates two control strategies: a photovoltaic fluctuation reduction strategy and a peak demand reduction strategy for electric vehicle charging stations. By leveraging prediction algorithms and machine learning techniques, the predictiveflex smoother method achieves precise power fluctuation forecasts, allowing efficient utilization of supercapacitors and vanadium redox flow batteries to smooth photovoltaic power fluctuations and reduce electrical vehicle peak demand. Comprehensive experimental investigations and simulations validate the method’s performance under various operational conditions. The results demonstrate the effectiveness of the predictive-flex smoother method, significantly improving the quality of power delivered to the grid while reducing costs. The experimental platform validates the real-time response of the proposed method, with response times under 500 ms. The experimental results further confirm the efficiency of the method in power smoothing and charging strategies with varying electrical vehicles models and connection coefficients
dc.identifier.doi10.1016/j.est.2024.111230
dc.identifier.issn2352152X
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/44348
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2352152X24008144?via%3Dihub
dc.language.isoes_ES
dc.sourceJournal of Energy Storage
dc.subjectPower fluctuations
dc.subjectElectric vehicle demand
dc.subjectPhotovoltaic technology
dc.subjectRenewable energy systems
dc.subjectPower smoothing
dc.titlePredictive Power Fluctuation Mitigation in Grid-Connected PV Systems with Rapid Response to EV charging stations
dc.typeARTÍCULO
dc.ucuenca.afiliacionVilla, E., Universidad de Jaen, Jaen, España; Villa, E., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.idautor0107151698
dc.ucuenca.indicebibliograficoINSPEC (The Institution of Engineering and Technology)
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.sciencedirect.com/journal/journal-of-energy-storage/vol/86/part/PA
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 86, número 1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
19.54 MB
Format:
Adobe Portable Document Format
Description:
document

Collections