Using a statistical efficiency methodology for predictors’ selection in the bedload transport problem: a high gradient experimental channel case

dc.contributor.authorCisneros Espinoza, Felipe Eduardo
dc.contributor.authorCarrillo Serrano, Verónica Margarita
dc.contributor.authorTimbe Castro, Luis Manuel
dc.contributor.authorMendoza, Daniel E.
dc.contributor.authorPetrie, John
dc.contributor.authorMatovelle Carrillo, Pedro Andres
dc.contributor.authorTorres Flores, Sebastián Eugenio
dc.contributor.authorPacheco Tobar, Esteban Alonso
dc.date.accessioned2022-02-08T14:18:38Z
dc.date.available2022-02-08T14:18:38Z
dc.date.issued2021
dc.description.abstractBedload transport rates for high-gradient gravel bed rivers has been studied through a physical model that replicated the typical features of these channels. A stepwise regression was performed to identify the best predictors from a set of independent variables. As independent variables channel slope, the ratio of area occupied by large particles to the total plan area, flow discharge, mean flow depth, mean flow velocity, water surface velocity, boundary shear stress, and shear velocity were considered. Different characteristic diameters (d16, d50, d84, and d90) were used to nondimensionalize the variables as well as to test the influence of grain size. A linear and a potential model were obtained for each characteristic diameter. Based on the correlation coefficients (R2) with the data used to build the models, the d50 and d84 linear and potential models were selected to perform further analysis. A set of independent data was used to verify the selected models. Better performance was observed for the potential models with 96% of the data falling within ½ order of the magnitude bands both for d50 and d84. R2 for the d50 and d84 potential models were 0.63 and 0.76, respectively. Therefore, the d84 potential model can be selected as the present study representative model.
dc.identifier.doi10.1016/j.aej.2021.11.052
dc.identifier.issn11100168
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/37991
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85120906338&doi=10.1016%2fj.aej.2021.11.052&origin=inward&txGid=de33b73ca625055a403e8c446e4fdaab
dc.language.isoes_ES
dc.sourceAlexandria Engineering Journal
dc.subjectBest predictors
dc.subjectAkaike-information-criterion
dc.subjectBedload transport
dc.subjectLaboratory experiments
dc.subjectHigh gradient
dc.titleUsing a statistical efficiency methodology for predictors’ selection in the bedload transport problem: a high gradient experimental channel case
dc.typeARTÍCULO
dc.ucuenca.afiliacionCarrillo, V., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionMendoza, D., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionPacheco, E., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionPetrie, J., Washington State University, Washington, Estados unidos
dc.ucuenca.afiliacionTimbe, L., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionCisneros, F., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionMatovelle, P., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionTorres, S., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaCarrillo Serrano, Veronica Margarita, veronica.carrillo@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto0.584
dc.ucuenca.idautor0302143565
dc.ucuenca.idautor0104040480
dc.ucuenca.idautor0000-0002-6362-0771
dc.ucuenca.idautor0000-0001-7467-1171
dc.ucuenca.idautor0302599410
dc.ucuenca.idautor0102114550
dc.ucuenca.idautor0101045540
dc.ucuenca.idautor0301102307
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.journals.elsevier.com/alexandria-engineering-journal
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 61, número 8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:
document

Collections