Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning

dc.contributor.authorGebauer, Anika
dc.contributor.authorEllinger, Monja
dc.contributor.authorBrito Gomez, Victor Manuel
dc.contributor.authorLieb, Mareike
dc.date.accessioned2021-01-13T15:27:24Z
dc.date.available2021-01-13T15:27:24Z
dc.date.issued2020
dc.description.abstract© 2020 Copernicus Gmb H. All rights reserved. Machine-learning algorithms are good at computing non-linear problems and fitting complex composite functions, which makes them an adequate tool for addressing multiple environmental research questions. One important application is the development of pedotransfer functions (PTFs). This study aims to develop water retention PTFs for two remote tropical mountain regions with rather different soil landscapes: (1) those dominated by peat soils and soils under volcanic influence with high organic matter contents and (2) those dominated by tropical mineral soils. Two tuning procedures were compared to fit boosted regression tree models: (1) tuning with grid search, which is the standard approach in pedometrics; and (2) tuning with differential evolution optimization. A nested cross-validation approach was applied to generate robust models. The area-specific PTFs developed outperform other more general PTFs. Furthermore, the first PTF for typical soils of Páramo landscapes (Ecuador), i.e., organic soils under volcanic influence, is presented. Overall, the results confirmed the differential evolution algorithm's high potential for tuning machine-learning models. While models based on tuning with grid search roughly predicted the response variables' mean for both areas, models applying the differential evolution algorithm for parameter tuning explained up to 25 times more of the response variables' variance.
dc.identifier.doi10.5194/soil-6-215-2020
dc.identifier.issn2199-3971
dc.identifier.urihttps://soil.copernicus.org/articles/6/215/2020/#top
dc.language.isoes_ES
dc.sourceSOIL
dc.subjectPedotransfer functions
dc.titleDevelopment of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
dc.typeARTÍCULO
dc.ucuenca.afiliacionGebauer, A., Helmholtz Centre for Environmental Research UFZ Halle (Saale), Halle, Alemania
dc.ucuenca.afiliacionEllinger, M., Helmholtz Centre for Environmental Research UFZ Halle (Saale), Halle, Alemania
dc.ucuenca.afiliacionBrito, V., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Brito, V., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionLieb, M., Helmholtz Centre for Environmental Research UFZ Halle (Saale), Halle, Alemania
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaGebauer, Anika , anika.gebauer@ufz.de
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.4
dc.ucuenca.idautorSGRP-3741-1
dc.ucuenca.idautorSGRP-3741-2
dc.ucuenca.idautor0104484605
dc.ucuenca.idautorSGRP-3741-4
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones397
dc.ucuenca.urifuentehttps://www.soil-journal.net/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 6, número 1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format
Description:
document

Collections