Unsupervised subjects classification using insulin and glucose data for insulin resistance assessment

dc.contributor.authorWong De Balzan, Sara
dc.date.accessioned2018-01-11T16:47:43Z
dc.date.available2018-01-11T16:47:43Z
dc.date.issued2015-09-02
dc.description.abstractIn this paper, the ?-means clustering algorithm is employed to perform an unsupervised classification of subjects based on unidimensional observations (HOMA-IR and the Matsuda indexes separately) and multidimensional observations (insulin and glucose samples obtained from the oral glucose tolerance test). The goal is to explore if the clusters obtained could be used to predict or diagnose insulin resistance or are related to the profiles of the population under study: metabolic syndrome, marathoners and sedentaries. Using two and three clusters, three classification experiments were carried out: i) using the HOMA-IR index as unidimensional observations, ii) using the Matsuda index as unidimensional observations, and iii) using five insulin and five glucose samples as multidimensional observations. The results show that using the HOMA-IR index the clusters are related to insulin resistance but when multidimensional observations are used in the classification process the clusters could be used to predict the insulin resistance or other related diseases.
dc.description.cityBogotá
dc.identifier.doi10.1109/STSIVA.2015.7330444
dc.identifier.isbn9781467394611
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84962783931&doi=10.1109%2fSTSIVA.2015.7330444&partnerID=40&md5=99fb81f9bcf7f7759af9821e7f6faa0c
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29209
dc.language.isoen_US
dc.publisherINSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC.
dc.source2015 20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015 - Conference Proceedings
dc.titleUnsupervised subjects classification using insulin and glucose data for insulin resistance assessment
dc.typeArticle
dc.ucuenca.afiliacionwong, s., investigador prometeo, deet, universidad de cuenca, ecuador
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.idautor081929618
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.nombrerevista20th Symposium on Signal Processing Images and Computer Vision STSIVA 2015
dc.ucuenca.numerocitaciones3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections