Assessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model

dc.contributor.authorOrellana Alvear, Johanna Marlene
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.contributor.authorRütger, Rollenbeck
dc.contributor.authorMuñoz Pauta, Paul Andres
dc.contributor.authorContreras Andrade, Pablo Andrés
dc.contributor.authorBendix, Jorg
dc.date.accessioned2021-01-11T22:57:39Z
dc.date.available2021-01-11T22:57:39Z
dc.date.issued2020
dc.description.abstract<jats:p>Discharge forecasting is a key component for early warning systems and extremely useful for decision makers. Forecasting models require accurate rainfall estimations of high spatial resolution and other geomorphological characteristics of the catchment, which are rarely available in remote mountain regions such as the Andean highlands. While radar data is available in some mountain areas, the absence of a well distributed rain gauge network makes it hard to obtain accurate rainfall maps. Thus, this study explored a Random Forest model and its ability to leverage native radar data (i.e., reflectivity) by providing a simplified but efficient discharge forecasting model for a representative mountain catchment in the southern Andes of Ecuador. This model was compared with another that used as input derived radar rainfall (i.e., rainfall depth), obtained after the transformation from reflectivity to rainfall rate by using a local Z-R relation and a rain gauge-based bias adjustment. In addition, the influence of a soil moisture proxy was evaluated. Radar and runoff data from April 2015 to June 2017 were used. Results showed that (i) model performance was similar by using either native or derived radar data as inputs (0.66 &lt; NSE &lt; 0.75; 0.72 &lt; KGE &lt; 0.78). Thus, exhaustive pre-processing for obtaining radar rainfall estimates can be avoided for discharge forecasting. (ii) Soil moisture representation as input of the model did not significantly improve model performance (i.e., NSE increased from 0.66 to 0.68). Finally, this native radar data-based model constitutes a promising alternative for discharge forecasting in remote mountain regions where ground monitoring is scarce and hardly available.</jats:p>
dc.identifier.doi10.3390/rs12121986
dc.identifier.issn2072-4292
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85086993084&origin=inward&txGid=367f59fa292cfc1fd26f96d4e19e45b4
dc.language.isoes_ES
dc.sourceRemote Sensing
dc.subjectGeneral earth and planetary sciences
dc.subjectDischarge forecasting
dc.subjectRadar rainfall
dc.subjectMachine learning
dc.subjectX-band
dc.subjectMountain region
dc.subjectRadar reflectivity
dc.subjectAndes
dc.subjectNative radar data
dc.titleAssessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model
dc.typeARTÍCULO
dc.ucuenca.afiliacionOrellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., University of Marburg, Marburg, Alemania
dc.ucuenca.afiliacionCelleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionRütger, R., University of Marburg, Marburg, Alemania
dc.ucuenca.afiliacionMuñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionContreras, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionBendix, J., University of Marburg, Marburg, Alemania
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.7.1 Ingeniería Ambiental y Geológica
dc.ucuenca.areaconocimientofrascatiespecifico2.7 Ingeniería del Medio Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaOrellana Alvear, Johanna Marlene, johanna.orellana@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.422
dc.ucuenca.idautor0104162268
dc.ucuenca.idautor0602794406
dc.ucuenca.idautor0000-0002-1423-4356
dc.ucuenca.idautor0104645619
dc.ucuenca.idautor0104826086
dc.ucuenca.idautor0000-0001-6559-2033
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/remotesensing
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 12, número 12

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
Description:
document

Collections