Modelización de mecanismos de falla dúctiles en barras utilizando redes neuronales artificiales

Loading...
Thumbnail Image

Date

2023-08-07

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad de Cuenca

Abstract

This research work focuses on modeling mechanisms of ductile failure in a one-dimensional bar. The main objective is to use methods based on Physics-Informed Neural Networks (PINN) and Machine Learning, employing the variational approach, to model the mechanism of ductile failure and deformation localization. Two implementations of PINN have been developed based on the variational principle, using different energy minimization equations that are equivalent to each other. The obtained results demonstrate that neural networks are capable of capturing elastoplastic behavior without the need for complex tools such as phase-fields. This numerical approach presents a promising option compared to alternative methods like finite elements, particularly for problems in higher dimensions where other methods show limitations. This opens up new lines of research in the field of modeling failure mechanisms in solids. It has been shown that these neural networks, applied through the variational principle, offer sufficient accuracy compared to analytical solutions. As a recommendation, it is suggested to further explore the nature of neural networks as a method for problem-solving in solid mechanics, as well as to implement neural networks in solving problems in 2D and 3D, which represents a future line of research.

Resumen

El presente trabajo de investigación se centra en la modelización de mecanismos de falla dúctil en una barra unidimensional. El objetivo principal es utilizar métodos basados en Physics-Informed Neural Networks (PINN) y Machine Learning, empleando el enfoque variacional, para modelizar el mecanismo de falla dúctil y la localización de deformaciones. Se desarrollaron dos implementaciones de PINN basadas en el principio variacional, utilizando diferentes ecuaciones de minimización de energía que son equivalentes entre sí. Los resultados obtenidos demuestran que las redes neuronales son capaces de capturar el comportamiento elastoplástico sin la necesidad de herramientas complejas como phasefields. Este enfoque numérico se presenta como una opción prometedora en comparación con métodos alternativos como los elementos finitos, especialmente para problemas de dimensiones superiores, donde otros métodos muestran limitaciones. Esto abre nuevas líneas de investigación en el campo de la modelización de mecanismos de falla en sólidos. Se demostró que estas redes neuronales, aplicadas mediante el principio variacional, ofrecen una precisión suficiente en comparación con las soluciones analíticas. Como recomendación, se sugiere profundizar en la naturaleza de las redes neuronales como método para la resolución de problemas en la mecánica de sólidos, así como implementar redes neuronales en la resolución de problemas en 2D y 3D, lo cual representa una línea de investigación futura.

Keywords

Ingeniería Civil, Redes neuronales, Mecánica de sólidos, Elasticidad, Fallas en ductos

Citation

Código de tesis

TI;1302

Código de tesis

Grado Académico

Ingeniero Civil

Enlace al documento