Lipid-anthropometric index optimization for insulin sensitivity estimation

dc.contributor.authorEncalada Torres, Lorena Esperanza
dc.contributor.authorWong De Balzan, Sara
dc.date.accessioned2018-01-11T16:47:19Z
dc.date.available2018-01-11T16:47:19Z
dc.date.issued2015-11-17
dc.description.abstractInsulin sensitivity (IS) is the ability of cells to react due to insuli?s presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.
dc.description.cityEcuador
dc.identifier.doi10.1117/12.2209328
dc.identifier.isbn9781628419160
dc.identifier.issn0277786X
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84958225510&doi=10.1117%2f12.2209328&partnerID=40&md5=12eb8074e12429d862b778617cdd77a1
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29071
dc.language.isoen_US
dc.publisherSPIE
dc.sourceProceedings of SPIE - The International Society for Optical Engineering
dc.subjectInsulin Sensitivity
dc.subjectMetabolic Syndrome
dc.subjectOral Glucose Tolerance Test
dc.subjectRandom Cross Validation
dc.subjectStatistical Analysis
dc.titleLipid-anthropometric index optimization for insulin sensitivity estimation
dc.typeArticle
dc.ucuenca.afiliacionencalada, l., facultad de ciencias médicas, universidad de cuenca, ecuador
dc.ucuenca.afiliacionwong, s., grupo de bioingenieriá y biofísica aplicada, universidad simón bolívar, venezuela, investigador prometeo, deet, universidad de cuenca, ecuador
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.factorimpacto0.23
dc.ucuenca.idautor0102905353
dc.ucuenca.idautor081929618
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.nombrerevista11th International Symposium on Medical Information Processing and Analysis SIPAIM 2015
dc.ucuenca.numerocitaciones1
dc.ucuenca.volumen9681

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections