Accuracy of connected confidence left ventricle segmentation in 3-D multi-slice computerized tomography images

dc.contributor.authorMedina, Rubén
dc.contributor.authorBautista Llivisaca, Mateo Sebastian
dc.contributor.authorMorocho Zurita, Carlos Villie
dc.contributor.ponenteBautista Llivisaca, Mateo Sebastian
dc.date.accessioned2019-07-31T20:39:42Z
dc.date.available2019-07-31T20:39:42Z
dc.date.issued2018
dc.descriptionCardiovascular diseases are the main cause of death in the World. This fact has motivated different actions for prevention, diagnosis and monitoring of cardiovascular diseases. In this work, the accuracy of a connected confidence left ventricle segmentation method is performed. This task is accomplished using a software platform for left ventricle segmentation of 3-D cardiac Multi-Slice Computerized Tomography (MSCT) images that is also described. The software platform has as a goal performing research about efficient methods for cardiac image segmentation and quantification. The accuracy assessment of the segmentation method is performed by comparing the estimated segmentation with respect to segmentations manually traced by cardiologists. Results show that the segmentation method provides Dice Similarity coefficients higher than 0.90 with low computational cost. The obtained segmentation is able to include within the left ventricular lumen the papillary trabeculae muscles, enabling further accurate estimation of the left ventricular mass.
dc.description.abstractCardiovascular diseases are the main cause of death in the World. This fact has motivated different actions for prevention, diagnosis and monitoring of cardiovascular diseases. In this work, the accuracy of a connected confidence left ventricle segmentation method is performed. This task is accomplished using a software platform for left ventricle segmentation of 3-D cardiac Multi-Slice Computerized Tomography (MSCT) images that is also described. The software platform has as a goal performing research about efficient methods for cardiac image segmentation and quantification. The accuracy assessment of the segmentation method is performed by comparing the estimated segmentation with respect to segmentations manually traced by cardiologists. Results show that the segmentation method provides Dice Similarity coefficients higher than 0.90 with low computational cost. The obtained segmentation is able to include within the left ventricular lumen the papillary trabeculae muscles, enabling further accurate estimation of the left ventricular mass.
dc.description.citySalinas
dc.identifier.doi10.1109/ETCM.2017.8247499
dc.identifier.isbn978-153863894-1
dc.identifier.issn0000-0000
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85045738426&origin=inward
dc.language.isoes_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.sourceEcuador Technical Chapters Meeting (ETCM), IEEE
dc.subjectConnected confidence
dc.subjectLeft ventricle segmentation
dc.subjectMulti-slice computerized tomography
dc.subjectSoftware platform
dc.titleAccuracy of connected confidence left ventricle segmentation in 3-D multi-slice computerized tomography images
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionMedina, R., Universidad de Los Andes, Bogota, Colombia
dc.ucuenca.afiliacionBautista, M., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Bautista, M., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionMorocho, C., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Morocho, C., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.11.2 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientofrascatiespecifico2.11 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientounescoamplio09 - Salud y Bienestar
dc.ucuenca.areaconocimientounescodetallado0914 - Tecnologías de Diagnóstico y Tratamiento Médico
dc.ucuenca.areaconocimientounescoespecifico091 - Salud
dc.ucuenca.comiteorganizadorconferenciaIEEE
dc.ucuenca.conferenciaETCM 2017 Second Ecuador Technical Chapters Meeting
dc.ucuenca.embargoend2050-12-30
dc.ucuenca.embargointerno2050-12-30
dc.ucuenca.fechafinconferencia2017-10-20
dc.ucuenca.fechainicioconferencia2017-10-16
dc.ucuenca.idautorSgrp-1610-1
dc.ucuenca.idautor0106000276
dc.ucuenca.idautor0300930328
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaIEEE
dc.ucuenca.paisECUADOR
dc.ucuenca.urifuentehttps://ieeexplore.ieee.org/xpl/conhome/8232983/proceeding
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 2017-January

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
documento.pdf
Size:
407.7 KB
Format:
Adobe Portable Document Format
Description:
document

Collections