Accuracy of connected confidence left ventricle segmentation in 3-D multi-slice computerized tomography images
| dc.contributor.author | Medina, Rubén | |
| dc.contributor.author | Bautista Llivisaca, Mateo Sebastian | |
| dc.contributor.author | Morocho Zurita, Carlos Villie | |
| dc.contributor.ponente | Bautista Llivisaca, Mateo Sebastian | |
| dc.date.accessioned | 2019-07-31T20:39:42Z | |
| dc.date.available | 2019-07-31T20:39:42Z | |
| dc.date.issued | 2018 | |
| dc.description | Cardiovascular diseases are the main cause of death in the World. This fact has motivated different actions for prevention, diagnosis and monitoring of cardiovascular diseases. In this work, the accuracy of a connected confidence left ventricle segmentation method is performed. This task is accomplished using a software platform for left ventricle segmentation of 3-D cardiac Multi-Slice Computerized Tomography (MSCT) images that is also described. The software platform has as a goal performing research about efficient methods for cardiac image segmentation and quantification. The accuracy assessment of the segmentation method is performed by comparing the estimated segmentation with respect to segmentations manually traced by cardiologists. Results show that the segmentation method provides Dice Similarity coefficients higher than 0.90 with low computational cost. The obtained segmentation is able to include within the left ventricular lumen the papillary trabeculae muscles, enabling further accurate estimation of the left ventricular mass. | |
| dc.description.abstract | Cardiovascular diseases are the main cause of death in the World. This fact has motivated different actions for prevention, diagnosis and monitoring of cardiovascular diseases. In this work, the accuracy of a connected confidence left ventricle segmentation method is performed. This task is accomplished using a software platform for left ventricle segmentation of 3-D cardiac Multi-Slice Computerized Tomography (MSCT) images that is also described. The software platform has as a goal performing research about efficient methods for cardiac image segmentation and quantification. The accuracy assessment of the segmentation method is performed by comparing the estimated segmentation with respect to segmentations manually traced by cardiologists. Results show that the segmentation method provides Dice Similarity coefficients higher than 0.90 with low computational cost. The obtained segmentation is able to include within the left ventricular lumen the papillary trabeculae muscles, enabling further accurate estimation of the left ventricular mass. | |
| dc.description.city | Salinas | |
| dc.identifier.doi | 10.1109/ETCM.2017.8247499 | |
| dc.identifier.isbn | 978-153863894-1 | |
| dc.identifier.issn | 0000-0000 | |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85045738426&origin=inward | |
| dc.language.iso | es_ES | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.source | Ecuador Technical Chapters Meeting (ETCM), IEEE | |
| dc.subject | Connected confidence | |
| dc.subject | Left ventricle segmentation | |
| dc.subject | Multi-slice computerized tomography | |
| dc.subject | Software platform | |
| dc.title | Accuracy of connected confidence left ventricle segmentation in 3-D multi-slice computerized tomography images | |
| dc.type | ARTÍCULO DE CONFERENCIA | |
| dc.ucuenca.afiliacion | Medina, R., Universidad de Los Andes, Bogota, Colombia | |
| dc.ucuenca.afiliacion | Bautista, M., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Bautista, M., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Morocho, C., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Morocho, C., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.11.2 Otras Ingenierias y Tecnologías | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.11 Otras Ingenierias y Tecnologías | |
| dc.ucuenca.areaconocimientounescoamplio | 09 - Salud y Bienestar | |
| dc.ucuenca.areaconocimientounescodetallado | 0914 - Tecnologías de Diagnóstico y Tratamiento Médico | |
| dc.ucuenca.areaconocimientounescoespecifico | 091 - Salud | |
| dc.ucuenca.comiteorganizadorconferencia | IEEE | |
| dc.ucuenca.conferencia | ETCM 2017 Second Ecuador Technical Chapters Meeting | |
| dc.ucuenca.embargoend | 2050-12-30 | |
| dc.ucuenca.embargointerno | 2050-12-30 | |
| dc.ucuenca.fechafinconferencia | 2017-10-20 | |
| dc.ucuenca.fechainicioconferencia | 2017-10-16 | |
| dc.ucuenca.idautor | Sgrp-1610-1 | |
| dc.ucuenca.idautor | 0106000276 | |
| dc.ucuenca.idautor | 0300930328 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.organizadorconferencia | IEEE | |
| dc.ucuenca.pais | ECUADOR | |
| dc.ucuenca.urifuente | https://ieeexplore.ieee.org/xpl/conhome/8232983/proceeding | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | volumen 2017-January |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- documento.pdf
- Size:
- 407.7 KB
- Format:
- Adobe Portable Document Format
- Description:
- document
