Integrating artificial neural networks and cellular automata model for spatial-temporal load forecasting

dc.contributor.authorFranco, John Fredy
dc.date.accessioned2023-01-20T17:12:40Z
dc.date.available2023-01-20T17:12:40Z
dc.date.issued2023
dc.description.abstractThe long-term distribution planning should include an understanding of consumer behavior and needs to develop strategic expansion alternatives that meet the future demand. The magnitude of growth along with the place where and when it will be developed are determined by the spatial load forecasting. Thus, this paper proposes a spatial-temporal load forecasting method to recognize and predict development patterns using historical dynamics and determine the development of consumers and electric load in small areas. An artificial neural network is integrated to a cellular automaton method to establish transition rules, based on land-use preferences, neighborhood states, spatial constraints, and a stochastic disturbance. The main feature is the incorporation of temporality, as well as taking advantage of geospatial-temporal data analytics to calibrate and validate a holistic and integral framework. Validation consists of measuring the spatial error pattern during the training and testing phase. The performance of the method is assessed in the service area of an Ecuadorian power utility. The knowledge extraction from large-scale data, evaluating the sensitivity of parameters and spatial resolution was carried out in reasonable times. It is concluded that adequate normalization and use of temporality in the spatial factors improve the error in the spatial-temporal load forecasting.
dc.identifier.doi10.1016/j.ijepes.2022.108906
dc.identifier.issn0142-0615
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40801
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85145022329&doi=10.1016%2fj.ijepes.2022.108906&origin=inward&txGid=259d1c8df4e21e31a7aaf1eb49425efd
dc.language.isoes_ES
dc.sourceInternational Journal of Electrical Power and Energy Systems
dc.subjectCellular automata
dc.titleIntegrating artificial neural networks and cellular automata model for spatial-temporal load forecasting
dc.typeARTÍCULO
dc.ucuenca.afiliacionFranco, J., UNESP-Universidade Estadual Paulista, Sao Paulo, Brasil
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.544
dc.ucuenca.idautor0104668009
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.sciencedirect.com/journal/international-journal-of-electrical-power-and-energy-systems/vol/148/suppl/C
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 148

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
11.44 MB
Format:
Adobe Portable Document Format
Description:
document

Collections