A comprehensive solution for electrical energy demand prediction based on auto-regressive models
| dc.contributor.author | Sáenz Peñafiel, Juan José | |
| dc.contributor.author | Luzuriaga, Jorge E. | |
| dc.contributor.author | Lemus Zúñiga, Lenin Guillermo | |
| dc.contributor.author | Solis Cabrera, Vanessa Alexandra | |
| dc.contributor.ponente | Sáenz Peñafiel, Juan José | |
| dc.date.accessioned | 2021-08-06T19:45:44Z | |
| dc.date.available | 2021-08-06T19:45:44Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Energy consumption and demand are two widely used terms necessary to understand the functioning of the different mechanisms used in electrical energy transactions. In this article, the design and construction of a comprehensive solution to forecast future trends in electricity transactions using the historical data and two auto-regressive models were considered. Simple linear regression and a complete model such as ARIMA. We compared these models to find which one best suits the type of data considering their strengths and weaknesses for this specific case. Finally, to complete the comprehensive solution, the results are presented to the final user. This solution is mainly aimed at professionals who carry out activities related to contracting and managing electricity supply in public institutions. This solution pretends to collaborate to reduce energy demand and therefore, consumption. | |
| dc.description.city | Manta | |
| dc.identifier.doi | 10.1007/978-3-030-59194-6_36 | |
| dc.identifier.isbn | 978-3-030-59194-6 | |
| dc.identifier.issn | 0000-0000 | |
| dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85094118561&origin=resultslist&sort=plf-f&src=s&sid=602f52359427b9118ad266ea4b25e539&sot=b&sdt=b&sl=111&s=TITLE-ABS-KEY%28A+Comprehensive+Solution+for+Electrical+Energy+Demand+Prediction+Based+on+Auto-Regressive+Models%29&relpos=0&citeCnt=0&searchTerm= | |
| dc.language.iso | es_ES | |
| dc.publisher | Springer Nature | |
| dc.source | Systems and Information Sciences | |
| dc.subject | Prediction | |
| dc.subject | ARIMA | |
| dc.subject | Energy | |
| dc.subject | Energy demand | |
| dc.subject | Data capture | |
| dc.subject | Auto-regressive models | |
| dc.title | A comprehensive solution for electrical energy demand prediction based on auto-regressive models | |
| dc.type | ARTÍCULO DE CONFERENCIA | |
| dc.ucuenca.afiliacion | Saenz, J., Universidad de Cuenca, Dirección de Investigación, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Luzuriaga, J., Universitat Politècnica de València, Valencia, España | |
| dc.ucuenca.afiliacion | Lemus, L., Universitat Politècnica de València, Valencia, España | |
| dc.ucuenca.afiliacion | Solis, V., Universidad de Cuenca, Dirección de Investigación, Cuenca, Ecuador | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.2.4 Ingeniería de La Comunicación y de Sistemas | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.2 Ingenierias Eléctrica, Electrónica e Información | |
| dc.ucuenca.areaconocimientounescoamplio | 06 - Información y Comunicación (TIC) | |
| dc.ucuenca.areaconocimientounescodetallado | 0613 - Software y Desarrollo y Análisis de Aplicativos | |
| dc.ucuenca.areaconocimientounescoespecifico | 061 - Información y Comunicación (TIC) | |
| dc.ucuenca.comiteorganizadorconferencia | ICCIS 2020 | |
| dc.ucuenca.conferencia | International Conference on Systems and Information Sciences | |
| dc.ucuenca.correspondencia | Saenz Peñafiel, Juan Jose, juan.saenz@ucuenca.edu.ec | |
| dc.ucuenca.cuartil | Q3 | |
| dc.ucuenca.factorimpacto | 0.184 | |
| dc.ucuenca.fechafinconferencia | 2020-07-29 | |
| dc.ucuenca.fechainicioconferencia | 2020-07-27 | |
| dc.ucuenca.idautor | 0104555131 | |
| dc.ucuenca.idautor | 0000-0002-9040-5954 | |
| dc.ucuenca.idautor | 0000-0002-6361-6019 | |
| dc.ucuenca.idautor | 0105288294 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.organizadorconferencia | ICCIS 2020 | |
| dc.ucuenca.pais | ECUADOR | |
| dc.ucuenca.urifuente | https://link.springer.com/book/10.1007/978-3-030-59194-6 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Volumen 1273 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 113.55 KB
- Format:
- Adobe Portable Document Format
- Description:
- document
