Flash-flood forecasting in an andean mountain catchment-development of a step-wise methodology based on the random forest algorithm

dc.contributor.authorMuñoz Pauta, Paul Andrés
dc.contributor.authorOrellana Alvear, Johanna Marlene
dc.contributor.authorWillems, Patrick
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.date.accessioned2019-07-31T15:51:51Z
dc.date.available2019-07-31T15:51:51Z
dc.date.issued2018
dc.descriptionFlash-flood forecasting has emerged worldwide due to the catastrophic socio-economic impacts this hazard might cause and the expected increase of its frequency in the future. In mountain catchments, precipitation-runoff forecasts are limited by the intrinsic complexity of the processes involved, particularly its high rainfall variability. While process-based models are hard to implement, there is a potential to use the random forest algorithm due to its simplicity, robustness and capacity to deal with complex data structures. Here a step-wise methodology is proposed to derive parsimonious models accounting for both hydrological functioning of the catchment (eg, input data, representation of antecedent moisture conditions) and random forest procedures (eg, sensitivity analyses, dimension reduction, optimal input composition). The methodology was applied to develop short-term prediction models of varying time duration (4, 8, 12, 18 and 24 h) for a catchment representative of the Ecuadorian Andes. Results show that the derived parsimonious models can reach validation efficiencies (Nash-Sutcliffe coefficient) from 0.761 (4-h) to 0.384 (24-h) for optimal inputs composed only by features accounting for 80% of the model’s outcome variance. Improvement in the prediction of extreme peak flows was demonstrated (extreme value analysis) by including precipitation information in contrast to the use of pure autoregressive models. View Full-Text
dc.description.abstractFlash-flood forecasting has emerged worldwide due to the catastrophic socio-economic impacts this hazard might cause and the expected increase of its frequency in the future. In mountain catchments, precipitation-runoff forecasts are limited by the intrinsic complexity of the processes involved, particularly its high rainfall variability. While process-based models are hard to implement, there is a potential to use the random forest algorithm due to its simplicity, robustness and capacity to deal with complex data structures. Here a step-wise methodology is proposed to derive parsimonious models accounting for both hydrological functioning of the catchment (eg, input data, representation of antecedent moisture conditions) and random forest procedures (eg, sensitivity analyses, dimension reduction, optimal input composition). The methodology was applied to develop short-term prediction models of varying time duration (4, 8, 12, 18 and 24 h) for a catchment representative of the Ecuadorian Andes. Results show that the derived parsimonious models can reach validation efficiencies (Nash-Sutcliffe coefficient) from 0.761 (4-h) to 0.384 (24-h) for optimal inputs composed only by features accounting for 80% of the model’s outcome variance. Improvement in the prediction of extreme peak flows was demonstrated (extreme value analysis) by including precipitation information in contrast to the use of pure autoregressive models. View Full-Text
dc.identifier.doi10.3390/w10111519
dc.identifier.issn20734441
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/33168
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055719343&origin=inward
dc.language.isoes_ES
dc.sourceWater (Switzerland)
dc.subjectFlash-Flood
dc.subjectForecasting
dc.subjectLag Analysis
dc.subjectMachine Learning
dc.subjectPrecipitation-Runoff
dc.subjectRandom Forest
dc.titleFlash-flood forecasting in an andean mountain catchment-development of a step-wise methodology based on the random forest algorithm
dc.typeARTÍCULO
dc.ucuenca.afiliacionMuñoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Muñoz, P., Universidad de Lovaina, Heverlee, Belgica
dc.ucuenca.afiliacionOrellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., University of Marburg, Marburg, Alemania
dc.ucuenca.afiliacionWillems, P., Universidad de Lovaina, Heverlee, Belgica
dc.ucuenca.afiliacionCelleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0522 - Medio Ambiente y Vida Silvestre
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaMuñoz Pauta, Paul Andres, paul.andres.munoz@gmail.com
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.67
dc.ucuenca.idautor0104645619
dc.ucuenca.idautor0104162268
dc.ucuenca.idautorSgrp-1371-3
dc.ucuenca.idautor0602794406
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones2
dc.ucuenca.urifuentehttps://www.scimagojr.com/journalsearch.php?q=21100255400&tip=sid&clean=0
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 10, número 11

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
5.16 MB
Format:
Adobe Portable Document Format
Description:
document

Collections