Technical efficiency of dairy farms in sierra andina using neural network modeling

dc.contributor.authorTorres Inga, Carlos Santiago
dc.contributor.authorLópez Crespo, Gonzalo Estuardo
dc.contributor.authorGuevara Viera, Raúl Victorino
dc.contributor.authorNarváez Terán, Jhonny Alfredo
dc.contributor.authorSerpa García, Víctor Guillermo
dc.contributor.authorGuzmán Espinoza, Clelia Kathrine
dc.contributor.authorGuevara Viera, Guillermo Emilio
dc.contributor.authorAguirre De juana, Angel Javier
dc.date.accessioned2020-05-22T03:16:49Z
dc.date.available2020-05-22T03:16:49Z
dc.date.issued2019
dc.descriptionThe aim of this paper was to estimate the efficiency of milk production of 1 168 cases in Ecuadoran Sierra Sur Andina, with the implementation of a neural network model with multilayer perceptrons. These cases were collected from secondary samples provided by the Official Institute of National Statistics of Ecuador, in 2016. The variables chosen for the model were total milk production on the previous day (P), as dependent variable, and total cattle heads (CH), total laborers in the field (E), and total area attended by laborer (S), as independent variables. The data from individual cases and their impact on the dependent variable were used as the variable selection criteria. The average efficiency was 8.11%, from which the total efficient cases detected (>0.70) were 11 (0.9% of the sample). Later, the cases studied were classified into three groups, depending on the estimated efficiency: Group 1 (≤ 0.4 efficiency); Group 2 (>0.4-≤0.7 efficiency); and Group 3 (>0.7 efficiency). A comparison produced several statistical differences (P<0.01) for variables total milk production/year on the farm, total field laborers, farm size, total cows, total cattle heads, calvings, pregnant cows, and served cows.
dc.description.abstractThe aim of this paper was to estimate the efficiency of milk production of 1 168 cases in Ecuadoran Sierra Sur Andina, with the implementation of a neural network model with multilayer perceptrons. These cases were collected from secondary samples provided by the Official Institute of National Statistics of Ecuador, in 2016. The variables chosen for the model were total milk production on the previous day (P), as dependent variable, and total cattle heads (CH), total laborers in the field (E), and total area attended by laborer (S), as independent variables. The data from individual cases and their impact on the dependent variable were used as the variable selection criteria. The average efficiency was 8.11%, from which the total efficient cases detected (>0.70) were 11 (0.9% of the sample). Later, the cases studied were classified into three groups, depending on the estimated efficiency: Group 1 (≤ 0.4 efficiency); Group 2 (>0.4-≤0.7 efficiency); and Group 3 (>0.7 efficiency). A comparison produced several statistical differences (P<0.01) for variables total milk production/year on the farm, total field laborers, farm size, total cows, total cattle heads, calvings, pregnant cows, and served cows.
dc.identifier.issn2224-7920
dc.identifier.urihttps://revistas.reduc.edu.cu/index.php/rpa/article/view/e2785
dc.language.isoes_ES
dc.sourceRevista de Producción Animal
dc.subjectDairy bovines
dc.subjectProduction boundaries
dc.subjectMultilayer perceptron
dc.subjectModeling
dc.titleTechnical efficiency of dairy farms in sierra andina using neural network modeling
dc.typeARTÍCULO
dc.ucuenca.afiliacionTorres, C., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionLopez, G., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionGuevara, R., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionNarvaez, J., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionSerpa, V., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionGuzman, C., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionGuevara, G., Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Cuenca, Ecuador
dc.ucuenca.afiliacionAguirre, A., Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT), Quito, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio4. Ciencias Agrícolas
dc.ucuenca.areaconocimientofrascatidetallado4.2.1 Animales y Ciencias Lácteas
dc.ucuenca.areaconocimientofrascatiespecifico4.2 Zootecnia y Ciencia de los Lácteos
dc.ucuenca.areaconocimientounescoamplio08 - Agricultura, Silvicultura, Pesca y Veterinaria
dc.ucuenca.areaconocimientounescodetallado0811 - Producción Agrícola y Ganadera
dc.ucuenca.areaconocimientounescoespecifico081 - Agricultura
dc.ucuenca.correspondenciaTorres Inga, Carlos Santiago, santiago.torres84@ucuenca.edu.ec
dc.ucuenca.idautor0104857867
dc.ucuenca.idautor0300721636
dc.ucuenca.idautorO827891
dc.ucuenca.idautor0102291218
dc.ucuenca.idautor0300552213
dc.ucuenca.idautor0103093704
dc.ucuenca.idautor0151455342
dc.ucuenca.idautorBe624806
dc.ucuenca.indicebibliograficoLATINDEX
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://revistas.reduc.edu.cu/index.php/rpa/issue/view/281
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 31, número 1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
473.15 KB
Format:
Adobe Portable Document Format
Description:
document

Collections