Evaluating Markov chains and Bayesian networks as probabilistic meteorological drought forecasting tools in the seasonally dry tropics of Costa Rica

dc.contributor.authorAvilés Añazco, Alex Manuel
dc.date.accessioned2023-09-28T19:00:27Z
dc.date.available2023-09-28T19:00:27Z
dc.date.issued2023
dc.description.abstractMeteorological drought is a climatic phenomenon that affects all global climates with social, political, and economic impacts. Consequently, it is essential to develop drought forecasting tools to minimize the impacts on communities. Here, probabilistic models based on Markov chains (first and second order) and Bayesian networks (first and second order) were explored to generate forecasts of meteorological drought events. A Ranked Probability Score (RPS) metric selected the best-performing model. Long-term precipitation data from Liberia Airport in Guanacaste, Costa Rica, from 1937 to 2020 were used to estimate the 1-month Standardized Precipitation Index (SPI-1) characterizing four meteorological drought states (no drought, moderate drought, severe drought, and extreme drought). The validation results showed that both models could reflect the climatic seasonality of the dry and rainy seasons without mistaking 4–5 months of the rain-free dry season for a drought. Bayesian networks outperformed Markov chains in terms of the RPS at both reproducing probabilities of drought states in the rainy season and when compared to the months in which a drought state was observed. Considering the forecasting capability of the latter method, we conclude that these models can help predict meteorological drought with a 1-month lead time in an operational early warning system. © 2023, The Author(s).
dc.identifier.doi10.1007/s00704-023-04623-w
dc.identifier.issn0177-798X
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/42946
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85169893285&origin=resultslist&sort=plf-f&src=s&sid=46eef3ead0257d3016e92c5c485ca2de&sot=b&sdt=b&s=TITLE-ABS-KEY%28Evaluating+Markov+chains+and+Bayesian+networks+as+probabilistic+meteorological+drought+forecasting+tools+in+the+seasonally+dry+tropics+of+Costa+Rica%29&sl=163&sessionSearchId=46eef3ead0257d3016e92c5c485ca2de
dc.language.isoes_ES
dc.sourceTheoretical and Applied Climatology
dc.subjectDrought forecast
dc.subjectCosta Rica
dc.subjectBayesian network
dc.subjectTropic
dc.subjectProbabilistic models
dc.subjectMarkov chains
dc.subjectDrought risk
dc.titleEvaluating Markov chains and Bayesian networks as probabilistic meteorological drought forecasting tools in the seasonally dry tropics of Costa Rica
dc.typeARTÍCULO
dc.ucuenca.afiliacionAviles, A., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.8.1 BioTecnología Ambiental
dc.ucuenca.areaconocimientofrascatiespecifico2.8 BioTecnología Medioambiental
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0522 - Medio Ambiente y Vida Silvestre
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto0.826
dc.ucuenca.idautor0102247186
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.springer.com/journal/704/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 154, número 0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Description:
document

Collections