A data-driven forecasting strategy to predict continuous hourly energy demand in smart buildings

dc.contributor.authorDuque Perez, Oscar
dc.date.accessioned2022-01-28T14:39:18Z
dc.date.available2022-01-28T14:39:18Z
dc.date.issued2021
dc.description.abstractSmart buildings seek to have a balance between energy consumption and occupant com-fort. To make this possible, smart buildings need to be able to foresee sudden changes in the build-ing’s energy consumption. With the help of forecasting models, building energy management sys-tems, which are a fundamental part of smart buildings, know when sudden changes in the energy consumption pattern could occur. Currently, different forecasting methods use models that allow building energy management systems to forecast energy consumption. Due to this, it is increasingly necessary to have appropriate forecasting models to be able to maintain a balance between energy consumption and occupant comfort. The objective of this paper is to present an energy consumption forecasting strategy that allows hourly day-ahead predictions. The presented forecasting strategy is tested using real data from two buildings located in Valladolid, Spain. Different machine learning and deep learning models were used to analyze which could perform better with the proposed strategy. After establishing the performance of the models, a model was assembled using the mean of the prediction values of the top five models to obtain a model with better performance. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
dc.identifier.doi10.3390/app11177886
dc.identifier.issn2076-3417
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/37881
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114110387&doi=10.3390%2fapp11177886&partnerID=40&md5=04c6c1521938105f1a7ceab00ba6e9a7
dc.language.isoes_ES
dc.sourceApplied Sciences
dc.subjectMulti-step forecasting
dc.titleA data-driven forecasting strategy to predict continuous hourly energy demand in smart buildings
dc.typeARTÍCULO
dc.ucuenca.afiliacionSantos, F., Instituto Tecnológico de Santo Domingo INTEC, Santo Domingo, Republica dominicana
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.8 Ciencias del Medioambiente
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0533 - Física
dc.ucuenca.areaconocimientounescoespecifico053 - Ciencias Físicas
dc.ucuenca.correspondenciaMariano Hernández, Deyslen, deyslen.mariano@intec.edu.do
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.44
dc.ucuenca.idautor0000-0002-8822-2948
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/applsci/special_issues/AI_Smart_Buildings
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 11, número 17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
8.17 MB
Format:
Adobe Portable Document Format
Description:
document

Collections