Publication:
Hepatic Steatosis detection using the co-occurrence matrix in tomography and ultrasound images

dc.contributor.authorMedina Molina, Ruben
dc.contributor.authorMorocho Zurita, Carlos Villie
dc.contributor.authorVanegas Peralta, Pablo Fernando
dc.date.accessioned2018-01-11T16:47:09Z
dc.date.available2018-01-11T16:47:09Z
dc.date.issued2015-09-02
dc.description.abstractHepatic Steatosis (HS) or Fatty Liver is a disease due to fat accumulation within hepatocytes. This disease requires treatment to avoid clinical complications such as hepatic inflammation, fibrosis and finally chronic hepatic damage and hepatic carcinoma. An algorithm for performing the manual segmentation was used. A polygon is traced for representing the region of interest in tomography (CT) images as well as in Ultrasound (US) images. These regions are then subdivided in a set of windows of size 4×4. For each of the windows the co-occurrence matrix is estimated as well as several descriptive statistical parameters. From these matrices, 9 descriptive statistical parameters were estimated. A Binary Logistic Regression (BLR) model was fitted considering as dependent variable the presence or absence of the disease and the descriptive statistical parameters as predictor variables. The model attains classification results of HS with a sensibility of 95.45% in US images and 93.75% in CT images in the venous phase.
dc.description.cityBogotá
dc.identifier.doi10.1109/STSIVA.2015.7330417
dc.identifier.isbn9781467394611
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84962861302&doi=10.1109%2fSTSIVA.2015.7330417&partnerID=40&md5=52dce2f6f33c010f910bd48b26887cb8
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29020
dc.language.isoen_US
dc.publisherINSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC.
dc.source2015 20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015 - Conference Proceedings
dc.titleHepatic Steatosis detection using the co-occurrence matrix in tomography and ultrasound images
dc.typeArticle
dc.ucuenca.afiliacionmedina, r., prometeo researcher, department of electric, electronics and telecommunications, engineering school, universidad de cuenca, ecuador
dc.ucuenca.afiliacionmorocho, v., computer science department, engineering school, universidad de cuenca, ecuador
dc.ucuenca.afiliacionvanegas, p., computer science department, engineering school, universidad de cuenca, ecuador
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.idautor102520123
dc.ucuenca.idautor0300930328
dc.ucuenca.idautor0102274891
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.nombrerevista20th Symposium on Signal Processing Images and Computer Vision STSIVA 2015
dc.ucuenca.numerocitaciones1
dspace.entity.typePublication
relation.isAuthorOfPublication9e65fa08-3e2f-41da-82f3-17ba250f5eef
relation.isAuthorOfPublicationfc1936f3-d2fb-467a-af14-e49f8304f399
relation.isAuthorOfPublication.latestForDiscoveryfc1936f3-d2fb-467a-af14-e49f8304f399

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections