Publication:
Predicting learners’ success in a self-paced MOOC through sequence patterns of self-regulated learning

dc.contributor.authorMaldonado Mahauad, Jorge Javier
dc.contributor.authorPérez Sanagustín, Mar
dc.contributor.authorMoreno Marcos, Pedro Manuel
dc.contributor.authorAlario Hoyos, Carlos
dc.contributor.authorMuñoz Merino, Pedro
dc.contributor.authorDelgado Kloos, Carlos
dc.date.accessioned2019-08-01T20:58:13Z
dc.date.available2019-08-01T20:58:13Z
dc.date.issued2018
dc.descriptionIn the past years, predictive models in Massive Open Online Courses (MOOCs) have focused on forecasting learners’ success through their grades. The prediction of these grades is useful to identify problems that might lead to dropouts. However, most models in prior work predict categorical and continuous variables using low-level data. This paper contributes to extend current predictive models in the literature by considering coarse-grained variables related to Self-Regulated Learning (SRL). That is, using learners’ self-reported SRL strategies and MOOC activity sequence patterns as predictors. Lineal and logistic regression modelling were used as a first approach of prediction with data collected from N = 2,035 learners who took a self-paced MOOC in Coursera. We identified two groups of learners (1) Comprehensive, who follow the course path designed by the teacher; and (2) Targeting, who seek …
dc.description.abstractIn the past years, predictive models in Massive Open Online Courses (MOOCs) have focused on forecasting learners’ success through their grades. The prediction of these grades is useful to identify problems that might lead to dropouts. However, most models in prior work predict categorical and continuous variables using low-level data. This paper contributes to extend current predictive models in the literature by considering coarse-grained variables related to Self-Regulated Learning (SRL). That is, using learners’ self-reported SRL strategies and MOOC activity sequence patterns as predictors. Lineal and logistic regression modelling were used as a first approach of prediction with data collected from N = 2,035 learners who took a self-paced MOOC in Coursera. We identified two groups of learners (1) Comprehensive, who follow the course path designed by the teacher; and (2) Targeting, who seek …
dc.description.cityLeeds
dc.identifier.doi10.1007/978-3-319-98572-5_27
dc.identifier.isbn978-331998571-8
dc.identifier.issn03029743
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/33206
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053215508&origin=inward
dc.language.isoes_ES
dc.publisherSpringer Verlag
dc.sourceLifelong Technology-Enhanced Learning
dc.subjectAchievement
dc.subjectMassive Open Online Courses
dc.subjectPrediction
dc.subjectSelf-Regulated Learning
dc.subjectSequence Patterns
dc.subjectSuccess
dc.titlePredicting learners’ success in a self-paced MOOC through sequence patterns of self-regulated learning
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionMaldonado, J., Pontifical Catholic University of Chile, Santiago, Chile; Maldonado, J., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.afiliacionPérez, M., Pontifical Catholic University of Chile, Santiago, Chile
dc.ucuenca.afiliacionMoreno, P., Universidad Carlos III de Madrid, Leganés, España
dc.ucuenca.afiliacionAlario, C., Universidad Carlos III de Madrid, Leganés, España
dc.ucuenca.afiliacionMuñoz, P., Universidad Carlos III de Madrid, Leganés, España
dc.ucuenca.afiliacionDelgado, C., Universidad Carlos III de Madrid, Leganés, España
dc.ucuenca.areaconocimientofrascatiamplio5. Ciencias Sociales
dc.ucuenca.areaconocimientofrascatidetallado5.9.1 Ciencias Sociales Interdisciplinarias
dc.ucuenca.areaconocimientofrascatiespecifico5.9 Otras Ciencias Sociales
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0613 - Software y Desarrollo y Análisis de Aplicativos
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.comiteorganizadorconferenciaHendrik Drachsler, German Institute for International Educational Research, Goethe University Frankfurt am Main, Germany, Open University of the Netherlands
dc.ucuenca.conferenciaEC-TEL 2018: 13th European Conference for Technology-Enhanced Learning
dc.ucuenca.cuartilQ2
dc.ucuenca.embargoend2050-12-31
dc.ucuenca.embargointerno2050-12-31
dc.ucuenca.factorimpacto0.295
dc.ucuenca.fechafinconferencia2018-09-06
dc.ucuenca.fechainicioconferencia2018-09-03
dc.ucuenca.idautor1102959051
dc.ucuenca.idautorSgrp-1548-2
dc.ucuenca.idautorSgrp-1548-3
dc.ucuenca.idautorSgrp-1548-4
dc.ucuenca.idautorSgrp-1548-5
dc.ucuenca.idautorSgrp-1548-6
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaUniversity of Leeds
dc.ucuenca.paisREINO UNIDO
dc.ucuenca.urifuentehttps://link.springer.com/book/10.1007/978-3-319-98572-5
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 11082 LNCS
dspace.entity.typePublication
relation.isAuthorOfPublication8308470a-4f00-42c4-abbe-f34c5d4c7dd6
relation.isAuthorOfPublication.latestForDiscovery8308470a-4f00-42c4-abbe-f34c5d4c7dd6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
154.44 KB
Format:
Adobe Portable Document Format
Description:
document

Collections