Publication:
Toward Enhanced Efficiency: Soft Sensing and Intelligent Modeling in Industrial Electrical Systems

dc.contributor.authorOchoa Correa, Danny Vinicio
dc.contributor.authorArévalo Cordero, Wilian Paul
dc.date.accessioned2024-09-05T16:36:03Z
dc.date.available2024-09-05T16:36:03Z
dc.date.issued2024
dc.description.abstractThis review article focuses on applying operation state detection and performance optimization techniques in industrial electrical systems. A comprehensive literature review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology to ensure a rigorous and transparent selection of high-quality studies. The review examines in detail how soft sensing technologies, such as state estimation and Kalman filtering, along with hybrid intelligent modeling techniques, are being used to enhance efficiency and reliability in the electrical industry. Specific case studies are analyzed in areas such as electrical network monitoring, fault detection in high-voltage equipment, and energy consumption optimization in industrial plants. The PRISMA methodology facilitated the identification and synthesis of the most relevant studies, providing a robust foundation for this review. Additionally, the article explores the challenges and research opportunities in applying these techniques in specific industrial contexts, such as steel metallurgy and chemical engineering. By incorporating findings from meticulously selected studies, this work offers a detailed, engineering-oriented insight into how advanced technologies are transforming industrial processes to achieve greater efficiency and operational safety.
dc.identifier.doi10.3390/pr12071365
dc.identifier.issn2227-9717
dc.identifier.urihttps://dspace.ucuenca.edu.ec/handle/123456789/45140
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85199857785&origin=resultslist&sort=plf-f&src=s&sid=2681391542ea89fefff9ac4a92bd60cc&sot=b&sdt=b&s=TITLE-ABS-KEY%28Toward+Enhanced+Efficiency%3A+Soft+Sensing+and+Intelligent+Modeling+in+Industrial+Electrical+Systems%29&sl=113&sessionSearchId=2681391542ea89fefff9ac4a92bd60cc&relpos=0
dc.language.isoes_ES
dc.sourceProcesses
dc.subjectSoft sensing
dc.subjectIntelligent modeling
dc.subjectIndustrial electrical systems
dc.subjectState estimation
dc.subjectMachine-learning
dc.titleToward Enhanced Efficiency: Soft Sensing and Intelligent Modeling in Industrial Electrical Systems
dc.typeARTÍCULO
dc.ucuenca.afiliacionOchoa, D., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionArevalo, W., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaArevalo Cordero, Wilian Paul, warevalo@ujaen.es
dc.ucuenca.cuartilQ3
dc.ucuenca.factorimpacto0.525
dc.ucuenca.idautor0105208128
dc.ucuenca.idautor0302495726
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/2227-9717/12
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 12, número 7
dspace.entity.typePublication
relation.isAuthorOfPublication0c47719f-c911-453e-9a84-71f018adcb52
relation.isAuthorOfPublication.latestForDiscovery0c47719f-c911-453e-9a84-71f018adcb52

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Description:
document

Collections