Publication:
Assessment of quarterly, semiannual and annual models to forecast monthly rainfall anomalies: the case of a tropical andean basin

dc.contributor.authorVázquez Patiño, Angel Oswaldo
dc.contributor.authorAvilés Añazco, Alex Manuel
dc.contributor.authorPeña Ortega, Mario Patricio
dc.date.accessioned2023-01-25T17:02:01Z
dc.date.available2023-01-25T17:02:01Z
dc.date.issued2022
dc.description.abstractRainfall forecasting is essential to manage water resources and make timely decisions to mitigate adverse effects related to unexpected events. Considering that rainfall drivers can change throughout the year, one approach to implementing forecasting models is to generate a model for each period in which the mechanisms are nearly constant, e.g., each season. The chosen predictors can be more robust, and the resulting models perform better. However, it has not been assessed whether the approach mentioned above offers better performance in forecasting models from a practical perspective in the tropical Andean region. This study evaluated quarterly, semiannual and annual models for forecasting monthly rainfall anomalies in an Andean basin to show if models implemented for fewer months outperform accuracy; all the models forecast rainfall on a monthly scale. Lagged rainfall and climate indices were used as predictors. Support vector regression (SVR) was used to select the most relevant predictors and train the models. The results showed a better performance of the annual models mainly due to the greater amount of data that SVR can take advantage of in training. If the training of the annual models had less data, the quarterly models would be the best. In conclusion, the annual models show greater accuracy in the rainfall forecast.
dc.identifier.doi10.3390/atmos13060895
dc.identifier.issn2073-4433
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40878
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85134030288&doi=10.3390%2fatmos13060895&origin=inward&txGid=60d5815a91d144991e98c0e0de2b0859
dc.language.isoes_ES
dc.sourceAtmosphere
dc.subjectLarge-scale climate indices
dc.subjectAndean river basin
dc.subjectAnomalies
dc.subjectForecasting
dc.subjectRainfall
dc.subjectSVM
dc.subjectSVR
dc.titleAssessment of quarterly, semiannual and annual models to forecast monthly rainfall anomalies: the case of a tropical andean basin
dc.typeARTÍCULO
dc.ucuenca.afiliacionAviles, A., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Facultad de Arquitectura y Urbanismo, Cuenca, Ecuador
dc.ucuenca.afiliacionPeña, M., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.9 Meteorología y Ciencias Atmosféricas
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaVazquez Patiño, Angel Oswaldo, alex.aviles@ucuenca.edu.ec
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.692
dc.ucuenca.idautor0302168141
dc.ucuenca.idautor0102247186
dc.ucuenca.idautor0105725634
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/2073-4433/13/6
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 13, número 6
dspace.entity.typePublication
relation.isAuthorOfPublication222503fc-0fb8-42d0-8b4f-ef411570f098
relation.isAuthorOfPublication365dd174-69d4-457a-80f4-0e34fe0b76e6
relation.isAuthorOfPublication.latestForDiscovery365dd174-69d4-457a-80f4-0e34fe0b76e6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
5.66 MB
Format:
Adobe Portable Document Format
Description:
document

Collections