Publication:
Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes

dc.contributor.authorAlvarado Martínez, Andrés Omar
dc.contributor.authorCedillo Galarza, Juan Sebastian
dc.contributor.authorNúñez, Ana Gabriela
dc.contributor.authorSánchez Cordero, Esteban Remigio
dc.contributor.authorTimbe Castro, Luis Manuel
dc.contributor.authorSamaniego Alvarado, Esteban Patricio
dc.date.accessioned2023-01-24T16:31:20Z
dc.date.available2023-01-24T16:31:20Z
dc.date.issued2022
dc.description.abstractThe behavior of many physical systems is described by means of differential equations. These equations are usually derived from balance principles and certain modelling assumptions. For realistic situations, the solution of the associated initial boundary value problems requires the use of some discretization technique, such as finite differences or finite volumes. This research tackles the numerical solution of a 1D differential equation to predict water surface profiles in a river, as well as to estimate the so-called roughness parameter. A very important concern when solving this differential equation is the ability of the numerical model to capture different flow regimes, given that hydraulic jumps are likely to be observed. To approximate the solution, Physics-Informed Neural Networks (PINN) are used. Benchmark cases with different bed profile shapes, which induce different flows types (supercritical, subcritical, and mixed) are tested first. Then a real mountain river morphology, the so-called Step-pool, is studied. PINN models were implemented in Tensor Flow using two neural networks. Different numbers of layers and neurons per hidden layer, as well as different activation functions (AF), were tried. The best performing model for each AF (according to the loss function) was compared with the solution of a standard finite difference discretization of the steady-state 1D model (HEC-RAS model). PINN models show good predictability of water surface profiles for slowly varying flow cases. For a rapid varying flow, the location and length of the hydraulic jump is captured, but it is not identical to the HEC-RAS model. The predictability of the tumbling flow in the Step-pool was good. In addition, the solution of the estimation of the roughness parameter (which is an inverse problem) using PINN shows the potential of this methodology to calibrate this parameter with limited cross-sectional data. PINN has shown potential for its application in open channel studies with complex bed profiles and different flow types, having in mind, however, that emphasis must be given to architecture selection.
dc.identifier.doi10.1186/s40323-022-00226-8
dc.identifier.issn22137467
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40851
dc.identifier.urihttps://amses-journal.springeropen.com/articles/10.1186/s40323-022-00226-8
dc.language.isoes_ES
dc.sourceAdvanced Modeling and Simulation in Engineering Sciences
dc.subjectComplex geometry
dc.subjectNeural network
dc.subjectPhysic informed neural network
dc.subjectStep-poo
dc.subjectOpen channel
dc.subjectMountain river
dc.titlePhysics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes
dc.title.alternativePhysics-informed neural network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes
dc.typeARTÍCULO
dc.ucuenca.afiliacionSamaniego, E., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionCedillo, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionNúñez, A., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionSanchez, E., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionTimbe, L., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionAlvarado, A., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaCedillo Galarza, Juan Sebastian, sebastian.cedillog@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto0.877
dc.ucuenca.idautor0102052594
dc.ucuenca.idautor0301102307
dc.ucuenca.idautor0102246477
dc.ucuenca.idautor0103665634
dc.ucuenca.idautor0000-0002-4996-0390
dc.ucuenca.idautor0104057351
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://amses-journal.springeropen.com/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 9, número 1
dspace.entity.typePublication
relation.isAuthorOfPublication3d38d652-1431-484a-ac3f-77a91e0a1d3b
relation.isAuthorOfPublication.latestForDiscovery3d38d652-1431-484a-ac3f-77a91e0a1d3b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Description:
document

Collections