Publication:
Adaptation of a process mining methodology to analyse learning strategies in a synchronous massive open online course

dc.contributor.authorMaldonado Mahauad, Jorge Javier
dc.contributor.authorPérez Sanagustín, Mar
dc.contributor.authorDelgado Kloos, Carlos
dc.contributor.authorAlario Hoyos, Carlos
dc.date.accessioned2023-01-24T17:28:08Z
dc.date.available2023-01-24T17:28:08Z
dc.date.issued2022
dc.description.abstractThe study of learners’ behaviour in Massive Open Online Courses (MOOCs) is a topic of great interest for the Learning Analytics (LA) research community. In the past years, there has been a special focus on the analysis of students’ learning strategies, as these have been associated with successful academic achievement. Different methods and techniques, such as temporal analysis and process mining (PM), have been applied for analysing learners’ trace data and categorising them according to their actual behaviour in a particular learning context. However, prior research in Learning Sciences and Psychology has observed that results from studies conducted in one context do not necessarily transfer or generalise to others. In this sense, there is an increasing interest in the LA community in replicating and adapting studies across contexts. This paper serves to continue this trend of reproducibility and builds upon a previous study which proposed and evaluated a PM methodology for classifying learners according to seven different behavioural patterns in three asynchronous MOOCs of Coursera. In the present study, the same methodology was applied to a synchronous MOOC on edX with N = 50,776 learners. As a result, twelve different behavioural patterns were detected. Then, we discuss what decision other researchers should made to adapt this methodology and how these decisions can have an effect on the analysis of trace data. Finally, the results obtained from applying the methodology contribute to gain insights on the study of learning strategies, providing evidence about the importance of the learning context in MOOCs
dc.description.cityCuenca
dc.identifier.doi10.1007/978-3-031-18272-3_9
dc.identifier.isbn978-303118271-6
dc.identifier.issn1865-0929
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40855
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85140770407&doi=10.1007%2f978-3-031-18272-3_9&origin=inward&txGid=df26b279c77de1993c2790d194ca35ca
dc.language.isoes_ES
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.sourceCommunications in Computer and Information Science
dc.subjectLearning strategies
dc.subjectProcess mining
dc.subjectMassive open online courses
dc.subjectLearning behaviour
dc.subjectLearning analytics
dc.titleAdaptation of a process mining methodology to analyse learning strategies in a synchronous massive open online course
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionDelgado, C., Universidad Carlos III de Madrid, Leganés, España
dc.ucuenca.afiliacionMaldonado, J., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.afiliacionAlario, C., Universidad Carlos III de Madrid, Leganés, España
dc.ucuenca.afiliacionPérez, M., Universite Toulouse, Jean Juares, Toulouse, Francia
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.4 Ingeniería de La Comunicación y de Sistemas
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0613 - Software y Desarrollo y Análisis de Aplicativos
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.comiteorganizadorconferenciaCEDIA-Ecuador, Universidad Laica Eloy Alfaro de Manabí
dc.ucuenca.conferencia10th Ecuadorian Congress of Information and Communication Technologies, TICEC 2022
dc.ucuenca.correspondenciaMaldonado Mahauad, Jorge Javier, jorge.maldonado@ucuenca.edu.ec
dc.ucuenca.cuartilQ4
dc.ucuenca.embargoend2050-12-30
dc.ucuenca.embargointerno2050-12-30
dc.ucuenca.factorimpacto0.21
dc.ucuenca.fechafinconferencia2022-10-14
dc.ucuenca.fechainicioconferencia2022-10-12
dc.ucuenca.idautor57226068561
dc.ucuenca.idautor0000-0002-3082-0814 View this author’s ORCID profile
dc.ucuenca.idautor1102959051
dc.ucuenca.idautor0000-0001-9854-9963
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaCEDIA
dc.ucuenca.paisECUADOR
dc.ucuenca.urifuentehttps://www.springer.com/series/7899
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 1648
dspace.entity.typePublication
relation.isAuthorOfPublication8308470a-4f00-42c4-abbe-f34c5d4c7dd6
relation.isAuthorOfPublication.latestForDiscovery8308470a-4f00-42c4-abbe-f34c5d4c7dd6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
423.96 KB
Format:
Adobe Portable Document Format
Description:
document

Collections