Publication:
Data mining techniques for analysing data extracted from serious games: a systematic literature review

dc.contributor.authorAcosta Urigüen, María Inés
dc.contributor.authorCedillo Orellana, Irene Priscila
dc.contributor.authorOrellana Cordero, Marcos
dc.date.accessioned2023-01-13T19:43:25Z
dc.date.available2023-01-13T19:43:25Z
dc.date.issued2022
dc.description.abstractSerious games are applications that pursue, on the one hand, the users' entertainment and, on the other hand, look to promote their learning, cognitive stimulation, among reaching other objectives. Moreover, data generated from those games (e.g., demographic information, gaming precision, user efficiency) provide insights helpful in improving certain aspects such as the attention and memory of the gamers. Therefore, applying data mining techniques over those data allows obtaining multiple patterns to improve the game interface, identify preferences, discover, predict, train, and stimulate the users' cognitive situation, among other aspects, to reach the games' objectives. Unfortunately, although several solutions have been addressed about this topic, no secondary studies have been found to condensate research that uses data mining to extract patterns from serious games. Thus, this paper presents a Systematic Literature Review (SLR) to extract such evidence from studies reported between 2001 and 2021. Besides, this SLR aims to answer research questions involving serious games solutions that train the cognitive functions of th
dc.description.cityAquisgrán
dc.identifier.doi10.5220/0011042900003188
dc.identifier.isbn978-989758566-1
dc.identifier.issn21844984
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40728
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85140969498&doi=10.5220%2f0011042900003188&origin=inward&txGid=d17dbbb46d393ab93b391feb28fff8d3
dc.language.isoes_ES
dc.publisherUniversidad de Toulous, Universidad de Limoges, Laboratorio de Investigación de Robótica
dc.sourceInternational Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
dc.subjectSerious games
dc.subjectData mining
dc.subjectSystematic review
dc.titleData mining techniques for analysing data extracted from serious games: a systematic literature review
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionOrellana, M., Universidad del Azuay, Cuenca, Ecuador
dc.ucuenca.afiliacionCedillo, I., Universidad de Cuenca, Cuenca, Ecuador; Cedillo, I., Laboratorio de Investigación y Desarrollo en Informática (LIDI), Cuenca, Ecuador
dc.ucuenca.afiliacionAcosta, M., Universidad del Azuay, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.10.2 Nano-Procesos [Aplicaciones a Nano-Escala]
dc.ucuenca.areaconocimientofrascatiespecifico2.10 NanoTecnología
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0724 - Minería y Extracción
dc.ucuenca.areaconocimientounescoespecifico072 - Fabricacion y Procesos
dc.ucuenca.comiteorganizadorconferenciaICT4AWE 2022
dc.ucuenca.conferencia8th International Conference on Information and Communication Technologies for Ageing Well and e-Health
dc.ucuenca.fechafinconferencia2022-04-25
dc.ucuenca.fechainicioconferencia2022-04-23
dc.ucuenca.idautor0102815842
dc.ucuenca.idautor0000-0003-4865-2983
dc.ucuenca.idautor0000-0002-3671-9362
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.organizadorconferenciaICT4AWE 2022
dc.ucuenca.paisALEMANIA
dc.ucuenca.urifuentehttps://www.proceedings.com/64165.html
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 0, número 0
dspace.entity.typePublication
relation.isAuthorOfPublication9ecaad85-5b06-4b92-b05c-0d89c7b10660
relation.isAuthorOfPublication.latestForDiscovery9ecaad85-5b06-4b92-b05c-0d89c7b10660

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
585.46 KB
Format:
Adobe Portable Document Format
Description:
document

Collections