Publication:
Mining theory-based patterns from Big data: Identifying self-regulated learning strategies in Massive Open Online Courses

dc.contributor.authorMaldonado Mahauad, Jorge Javier
dc.contributor.authorPerez Sanagustín, Mar
dc.contributor.authorKizilcec, Rene
dc.contributor.authorMuñoz Gama, Jorge
dc.date.accessioned2018-10-19T18:03:47Z
dc.date.available2018-10-19T18:03:47Z
dc.date.issued2018
dc.descriptionBig data in education offers unprecedented opportunities to support learners and advance research in the learning sciences. Analysis of observed behaviour using computational methods can uncover patterns that reflect theoretically established processes, such as those involved in self-regulated learning (SRL). This research addresses the question of how to integrate this bottom-up approach of mining behavioural patterns with the traditional top- down approach of using validated self-reporting instruments. Using process mining, we extracted interaction sequences from fine-grained behavioural traces for 3458 learners across three Massive Open Online Courses. We identified six distinct interaction sequence patterns. We matched each interaction sequence pattern with one or more theory-based SRL strategies and identified three clusters of learners. First, Comprehensive Learners …
dc.description.abstractBig data in education offers unprecedented opportunities to support learners and advance research in the learning sciences. Analysis of observed behaviour using computational methods can uncover patterns that reflect theoretically established processes, such as those involved in self-regulated learning (SRL). This research addresses the question of how to integrate this bottom-up approach of mining behavioural patterns with the traditional top- down approach of using validated self-reporting instruments. Using process mining, we extracted interaction sequences from fine-grained behavioural traces for 3458 learners across three Massive Open Online Courses. We identified six distinct interaction sequence patterns. We matched each interaction sequence pattern with one or more theory-based SRL strategies and identified three clusters of learners. First, Comprehensive Learners …
dc.identifier.doi10.1016/j.chb.2017.11.011
dc.identifier.issn0747-5632
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034415787&origin=inward
dc.language.isoes_ES
dc.sourceComputers in Human Behavior
dc.subjectLearning Strategies
dc.subjectMassive Open Online Courses
dc.subjectProcess Mining
dc.subjectSelf-Regulated Learning
dc.titleMining theory-based patterns from Big data: Identifying self-regulated learning strategies in Massive Open Online Courses
dc.typeARTÍCULO
dc.ucuenca.afiliacionMaldonado, J., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Maldonado, J., Pontificia Universidad Catolica de Chile, Santiago, Chile
dc.ucuenca.afiliacionPerez, M., Pontificia Universidad Catolica de Chile, Santiago, Chile
dc.ucuenca.afiliacionKizilcec, R., Stanford University, Palo Alto, Estados unidos
dc.ucuenca.afiliacionMuñoz, J., Pontificia Universidad Catolica de Chile, Santiago, Chile
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.2.1 Ciencias de la Computación
dc.ucuenca.areaconocimientofrascatiespecifico1.2 Informática y Ciencias de la Información
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0612 - Base de Datos, Diseno y Administración de Redes
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.correspondenciaMaldonado Mahauad, Jorge Javier, jjmaldonado@uc.cl
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.555
dc.ucuenca.idautor1102959051
dc.ucuenca.idautor0000-0001-9854-9963
dc.ucuenca.idautor0000-0001-6283-5546
dc.ucuenca.idautor0000-0002-6908-3911
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones1
dc.ucuenca.urifuentehttp://www.sciencedirect.com/science/journal/07475632
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 80, número 0
dspace.entity.typePublication
relation.isAuthorOfPublication8308470a-4f00-42c4-abbe-f34c5d4c7dd6
relation.isAuthorOfPublication.latestForDiscovery8308470a-4f00-42c4-abbe-f34c5d4c7dd6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
document

Collections