Publication:
A comparative study of black-box models for cement fineness prediction using SCADA measurements of a closed circuit grinding

dc.contributor.authorMinchala Ávila, Luis Ismael
dc.contributor.authorMata, J. P.
dc.contributor.authorSanchez, C.
dc.contributor.authorYungaicela, N. M.
dc.date.accessioned2018-01-11T16:47:16Z
dc.date.available2018-01-11T16:47:16Z
dc.date.issued2016-02-01
dc.description.abstractThis paper presents a comparative study of three different modeling techniques for predicting cement fineness using input-output SCADA measurements of the closed circuit grinding in a cement plant. The modeling approaches used are the following: statistical, artificial neural networks (ANN), and adaptive neuro-fuzzy inference system (ANFIS). The data set for generating the predictive models are obtained from a database of the operation of the cement plant, UCEM-Guapan located in Azogues, Ecuador. Online validations of the proposed models allow the selection of the best approach and the most accurate models for cement fineness prediction, Blaine and percentage passing the sieve No. 325.
dc.identifier.doi10.1109/TLA.2016.7437209
dc.identifier.issn15480992
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84964385401&doi=10.1109%2fTLA.2016.7437209&partnerID=40&md5=759a4ae6c97f49f27bdb945400c593ed
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29057
dc.language.isoen_US
dc.publisherIEEE COMPUTER SOCIETY
dc.sourceIEEE Latin America Transactions
dc.subjectBlack-Box Model
dc.subjectFineness Of Cement
dc.subjectPrediction
dc.titleA comparative study of black-box models for cement fineness prediction using SCADA measurements of a closed circuit grinding
dc.typeArticle
dc.ucuenca.afiliacionminchala, l.i., universidad de cuenca, cuenca, ecuador
dc.ucuenca.afiliacionmata, j.p., universidad de cuenca, cuenca, ecuador
dc.ucuenca.afiliacionsanchez, c., universidad de cuenca, cuenca, ecuador
dc.ucuenca.afiliacionyungaicela, n.m., universidad de cuenca, cuenca, ecuador
dc.ucuenca.cuartilQ2
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.factorimpacto0.247
dc.ucuenca.idautor0301453486
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.volumen14
dspace.entity.typePublication
relation.isAuthorOfPublicationa3e784e2-0457-4d35-911e-12908570f43c
relation.isAuthorOfPublication.latestForDiscoverya3e784e2-0457-4d35-911e-12908570f43c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections