Publication:
The Assessment of Rainfall Prediction Using Climate Models Results and Projections under Future Scenarios: the Machángara Tropical Andean Basin Case

dc.contributor.authorAvilés Añazco, Alex Manuel
dc.contributor.authorVázquez Patiño, Angel Oswaldo
dc.contributor.authorPeña Ortega, Mario Patricio
dc.date.accessioned2022-01-12T19:48:39Z
dc.date.available2022-01-12T19:48:39Z
dc.date.issued2021
dc.description.abstractRainfall is vital in the biosphere and predicting it is essential under the possible adverse effects of climate change. Rainfall behavior is linked to the availability of fresh water and the development of almost all the activities necessary for human subsistence. Therefore, knowing their patterns under future scenarios could help decision-makers to plan water use policies. This study used the random forest algorithm to predict rainfall in Chanlud and El Labrado stations, located in the tropical Machángara high mountain basin in Ecuador. Data from the Ecuador project's third national communication (TNC) were used to train the prediction models. First, those models' performance was analyzed to know which climate model results of the TNC provide more information to learn observed rainfall patterns. Then, the rainfall signal was projected under the RCP 4.5 and 8.5 scenarios. Among the most important results obtained, it stands out that the assembly results of the TNC provided the best information to learn rainfall patterns in the present. The performance is the best from January to July, but from August to December it is lower. Rainfall projections under RCP 8.5 are, in general, lower than under RCP 4.5. No significant trends were found in the future. However, a very slight increase (decrease) of rainfall was observed for the driest (wettest) months in both stations, although slightly more accentuated in El Labrado
dc.identifier.issn2088-5334
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/37758
dc.identifier.urihttp://ijaseit.insightsociety.org/index.php?option=com_content&view=article&id=9&Itemid=1&article_id=14686
dc.language.isoes_ES
dc.sourceInternational Journal on Advanced Science, Engineering and Information Technology
dc.subjectprojection
dc.subjectMachángara basin
dc.subjectrainfall prediction
dc.subjectrandom forest
dc.subjectclimate models
dc.subjectfuture scenarios
dc.subjectRCP
dc.titleThe Assessment of Rainfall Prediction Using Climate Models Results and Projections under Future Scenarios: the Machángara Tropical Andean Basin Case
dc.typeARTÍCULO
dc.ucuenca.afiliacionAviles, A., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionPeña, M., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaVazquez Patiño, Angel Oswaldo, angel.vazquezp@ucuenca.edu.ec
dc.ucuenca.cuartilQ3
dc.ucuenca.factorimpacto0.22
dc.ucuenca.idautor0105725634
dc.ucuenca.idautor0102247186
dc.ucuenca.idautor0302168141
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.urifuentehttp://ijaseit.insightsociety.org/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 11, número 5
dspace.entity.typePublication
relation.isAuthorOfPublication222503fc-0fb8-42d0-8b4f-ef411570f098
relation.isAuthorOfPublication365dd174-69d4-457a-80f4-0e34fe0b76e6
relation.isAuthorOfPublication.latestForDiscovery365dd174-69d4-457a-80f4-0e34fe0b76e6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
document

Collections