Publication:
Evaluación de métodos de relleno para series temporales de precipitación y temperatura diarias: el caso de los Andes ecuatorianos

dc.contributor.authorSamaniego Alvarado, Esteban Patricio
dc.contributor.authorCampozano Parra, Lenin Vladimir
dc.contributor.authorSánchez Cordero, Esteban Remigio
dc.contributor.authorAvilés Añazco, Alex Manuel
dc.date.accessioned2023-03-14T16:32:15Z
dc.date.available2023-03-14T16:32:15Z
dc.date.issued2014
dc.descriptionSeries continuas de precipitación y temperatura facilitan y mejoran considerablemente la calibración y validación de modelos hidrológicos y climáticos, utilizados entre otras cosas, para la planificación y manejo de recursos hídricos y el pronóstico de los posibles efectos del cambio climático en el regimen lluvia-escorrentia de las cuencas hidrográficas. La bondad de ajuste de los modelos está entre los factores que dependen de la continuidad de las series temporales. En países en vías de desarrollo los vacíos en las series temporales de variables climáticas es común. Ya que los vacíos en las series temporales pueden comprometer severamente la utilidad de los datos, este estudio aplicado en la cuenca del río Paute en los Andes Ecuatorianos, examina el desempeño de 17 métodos determinísticos de relleno de datos diarios de las variables precipitación y temperatura media. A pesar de la existencia de métodos de relleno más sofisticados como métodos estocásticos o métodos de inteligencia artificial, en este estudio se dio preferencia a métodos determinísticos por su robustez, facilidad de implementación, y eficiencia computacional. Los resultados revelan que para rellenar series temporales de precipitación diaria, el método de regresión lineal múltiple ponderada es el mejor, debido a la consideración de la razón entre el coeficiente de correlación de Pearson y la distancia con respecto a otras estaciones como factor de ponderación, dando mayor importancia a las estaciones más cercanas altamente correlacionadas. Para temperatura, la media climatológica del día fue claramente el mejor método, posiblemente debido a la escacez de datos de estaciones cercanas localizadas también en elevaciones diferentes, sugiriendo la necesidad de considerar en futuros estudios el impacto de la elevación en la interpolación de datos.
dc.description.abstractContinuous time series of precipitation and temperature considerably facilitate and improve the calibration and validation of climate and hydrologic models, used inter alia for the planning and management of earth’s water resources and for the prognosis of the possible effects of climate change on the rainfall-runoff regime of basins. The goodness-of-fit of models is among other factors dependent from the completeness of the time series data. Particular in developing countries gaps in time series data are very common. Since gaps can severely compromise data utility this research with application to the Andean Paute river basin examines the performance of 17 deterministic infill methods for completing time series of daily precipitation and mean temperature. Although sophisticated approaches for infilling gaps, such as stochastic or artificial intelligence methods exist, preference in this study was given to deterministic approaches for their robustness, easiness of implementation and computational efficiency. Results reveal that for the infilling of daily precipitation time series the weighted multiple linear regression method outperforms due to considering the ratio of the Pearson correlation coefficientto the distance, giving more weight to both, highly correlated and nearby stations. For mean temperature, the climatological mean of the day was clearly the best method, most likely due to the scarcity of weather stations measuring temperature, and because the few available stations are located at different elevations in the landscape, suggesting the need to address in future studies the impact of elevation on the interpolation.
dc.identifier.doi10.18537/mskn.05.01.07
dc.identifier.issn2477-8893
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/41452
dc.identifier.urihttps://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/431
dc.language.isoes_ES
dc.sourceMaskana
dc.subjectSeries temporales
dc.subjectMétodos determinísticos de relleno
dc.subjectRelleno de datos
dc.subjectTemperatura media del día
dc.subjectPrecipitación diaria
dc.subjectCuenca andina del río Paute
dc.titleEvaluación de métodos de relleno para series temporales de precipitación y temperatura diarias: el caso de los Andes ecuatorianos
dc.title.alternativeEvaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes
dc.typeARTÍCULO
dc.ucuenca.afiliacionAviles, A., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionCampozano, L., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionSanchez, E., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionSamaniego, E., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.1.1 Ingeniería Civil
dc.ucuenca.areaconocimientofrascatiespecifico2.1 Ingeniería Civil
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0711 - Ingeniería y Procesos Químicos
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaCampozano Parra, Lenin Vladimir, lenin_camp@yahoo.com
dc.ucuenca.idautor0102677200
dc.ucuenca.idautor0102247186
dc.ucuenca.idautor0102052594
dc.ucuenca.idautor0103665634
dc.ucuenca.indicebibliograficoSIN INDEXAR
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 5, número 1
dspace.entity.typePublication
relation.isAuthorOfPublicationc02e0148-d91c-4fad-834a-19969dd559ad
relation.isAuthorOfPublication4b70a2e4-09d1-4c28-8f8a-9a307b24602b
relation.isAuthorOfPublication222503fc-0fb8-42d0-8b4f-ef411570f098
relation.isAuthorOfPublication.latestForDiscoveryc02e0148-d91c-4fad-834a-19969dd559ad

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
632.52 KB
Format:
Adobe Portable Document Format
Description:
document

Collections