Publication:
Effectiveness of causality-based predictor selection for statistical downscaling: a case study of rainfall in an Ecuadorian Andes basin

dc.contributor.authorCampozano Parra, Lenin Vladimir
dc.contributor.authorVázquez Patiño, Angel Oswaldo
dc.contributor.authorAvilés Añazco, Alex Manuel
dc.contributor.authorSamaniego Alvarado, Esteban Patricio
dc.date.accessioned2023-01-12T14:09:24Z
dc.date.available2023-01-12T14:09:24Z
dc.date.issued2022
dc.description.abstractDownscaling aims to take large-scale information and map it to smaller scales to reproduce local climate signals. An essential step in implementing a parsimonious downscaling model is the selection of a subset of relevant predictors that increase the simulation accuracy. According to relevant literature, predictive models that use predictors chosen through causality methods, not widely used in downscaling, are more interpretable and robust. Characteristics that do not necessarily pursue the selection methods are commonly used in machine learning (ML), where the primary objective is to maximize accuracy. This study then explores whether the improvement in interpretability and robustness of models that use causally selected predictors is not achieved at the expense of poor downscaling performance in terms of simulation accuracy. To this end, one set of three methods based on causality and one set of four standard predictor selection methods used in ML are compared, centered on the downscaling performance of rainfall in an Ecuadorian Andes basin. One causality-based selection method is based on Granger causality (GC), and two are based on a constraint-based algorithm for structure learning, namely the Peter and Clark algorithm (PCalg) and the based on PCalg and the momentary conditional independence (PCMCI). Regarding the methods used in ML, one is based on the variance of the predictors (variance threshold), two are based on univariate statistical tests (F test and mutual information), and one is based on the recursive elimination of predictors (RFE) according to their contribution to the prediction model. The number of methods in each set results from those that are considered standard in many ML libraries or have been used for regression or climatology (causality-based). The selected predictors are used to train statistical downscaling models based on the random forest and support vector machine learning algorithms to assess their performance and rank the selection methods. Among the most remarkable findings, the methods based on causality show a robust selection. For instance, the causality-based methods selected 53 different predictors in one of the considered stations, while the ML-based methods selected 73 for downscaling models with similar performance. Furthermore, when the predictors used in the best performing downscaling models are analyzed, it is shown that the different selection methods based on causality tend to choose a subset of predictors that do not differ greatly, contrary to the methods based on machine learning. This evidences a more concise selection of the causality-based methods. Finally, the evaluation metrics of the downscaling models showed that the best selection method is RFE, but the following best were consistently those based on causality (mainly PCMCI). The study evidences no significant performance detriment when using the causally selected predictors.
dc.identifier.doi10.1007/s00704-022-04205-2
dc.identifier.issn0177-798X, e 1434-4483
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40687
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85138554590&origin=resultslist&sort=plf-f&src=s&st1=Effectiveness+of+causality-based+predictor+selection+for+statistical+downscaling%3a+a+case+study+of+rainfall+in+an+Ecuadorian+Andes+basin&sid=1c019d67bd6bf7cf0550ef0ddc187d2a&sot=b&sdt=b&sl=150&s=TITLE-ABS-KEY%28Effectiveness+of+causality-based+predictor+selection+for+statistical+downscaling%3a+a+case+study+of+rainfall+in+an+Ecuadorian+Andes+basin%29&relpos=0&citeCnt=0&searchTerm=#indexed-keywords
dc.language.isoes_ES
dc.sourceTheoretical and Applied Climatology
dc.subjectAndes
dc.subjectPrecipitation intensity
dc.subjectMachine learning
dc.subjectPrediction
dc.subjectDownscaling
dc.subjectClimate variation
dc.subjectEcuador
dc.titleEffectiveness of causality-based predictor selection for statistical downscaling: a case study of rainfall in an Ecuadorian Andes basin
dc.typeARTÍCULO
dc.ucuenca.afiliacionAviles, A., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador; Aviles, A., Universidad de Cuenca, Centro de Estudios Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionSamaniego, E., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Samaniego, E., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Facultad de Arquitectura y Urbanismo, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionCampozano, L., Escuela Politécnica Nacional (EPN), Quito, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0532 - Ciencias de la Tierra
dc.ucuenca.areaconocimientounescoespecifico053 - Ciencias Físicas
dc.ucuenca.correspondenciaVazquez Patiño, Angel Oswaldo, angel.vazquezp@ucuenca.edu.ec
dc.ucuenca.cuartilQ2
dc.ucuenca.embargoend2023-12-31
dc.ucuenca.embargointerno2023-12-31
dc.ucuenca.factorimpacto0.775
dc.ucuenca.idautor0102677200
dc.ucuenca.idautor0102052594
dc.ucuenca.idautor0105725634
dc.ucuenca.idautor0102247186
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.springer.com/journal/704/
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 150, número 3-4
dspace.entity.typePublication
relation.isAuthorOfPublication222503fc-0fb8-42d0-8b4f-ef411570f098
relation.isAuthorOfPublicationc02e0148-d91c-4fad-834a-19969dd559ad
relation.isAuthorOfPublication.latestForDiscovery222503fc-0fb8-42d0-8b4f-ef411570f098

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
782.9 KB
Format:
Adobe Portable Document Format
Description:
document

Collections