Publication:
A Systematic Review on the Integration of Artificial Intelligence into Energy Management Systems for Electric Vehicles: Recent Advances and Future Perspectives

dc.contributor.authorVilla Ávila, Edisson Andrés
dc.contributor.authorOchoa Correa, Danny Vinicio
dc.contributor.authorArévalo Cordero, Wilian Paul
dc.date.accessioned2024-09-06T17:16:10Z
dc.date.available2024-09-06T17:16:10Z
dc.date.issued2024
dc.description.abstractThis systematic review paper examines the current integration of artificial intelligence into energy management systems for electric vehicles. Using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology, 46 highly relevant articles were systematically identified from extensive literature research. Recent advancements in artificial intelligence, including machine learning, deep learning, and genetic algorithms, have been analyzed for their impact on improving electric vehicle performance, energy efficiency, and range. This study highlights significant advancements in energy management optimization, route planning, energy demand forecasting, and real-time adaptation to driving conditions through advanced control algorithms. Additionally, this paper explores artificial intelligence’s role in diagnosing faults, predictive maintenance of electric propulsion systems and batteries, and personalized driving experiences based on driver preferences and environmental factors. Furthermore, the integration of artificial intelligence into addressing security and cybersecurity threats in electric vehicles’ energy management systems is discussed. The findings underscore artificial intelligence’s potential to foster innovation and efficiency in sustainable mobility, emphasizing the need for further research to overcome current challenges and optimize practical applications.
dc.identifier.doi10.3390/wevj15080364
dc.identifier.issn2032-6653
dc.identifier.urihttps://dspace.ucuenca.edu.ec/handle/123456789/45171
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85202342397&origin=resultslist&sort=plf-f&src=s&sid=36a98de0a70aba9919417ca4f322a4a1&sot=b&sdt=b&s=TITLE-ABS-KEY%28A+Systematic+Review+on+the+Integration+of+Artificial+Intelligence+into+Energy+Management+Systems+for+Electric+Vehicles%3A+Recent+Advances+and+Future+Perspectives%29&sl=174&sessionSearchId=36a98de0a70aba9919417ca4f322a4a1&relpos=0
dc.language.isoes_ES
dc.sourceWorld Electric Vehicle Journal
dc.subjectSystematic literature review
dc.subjectArtificial intelligence
dc.subjectEnergy management systems
dc.subjectElectric vehicles
dc.subjectOptimization techniques
dc.subjectBattery management systems
dc.subjectRenewable energy integration
dc.subjectSmart grids
dc.titleA Systematic Review on the Integration of Artificial Intelligence into Energy Management Systems for Electric Vehicles: Recent Advances and Future Perspectives
dc.typeARTÍCULO
dc.ucuenca.afiliacionVilla, E., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionArevalo, W., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionOchoa, D., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaArevalo Cordero, Wilian Paul, warevalo@ujaen.es
dc.ucuenca.factorimpacto0
dc.ucuenca.idautor0107151698
dc.ucuenca.idautor0302495726
dc.ucuenca.idautor0105208128
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/2032-6653/15/8/364
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 15, número 8
dspace.entity.typePublication
relation.isAuthorOfPublication0c47719f-c911-453e-9a84-71f018adcb52
relation.isAuthorOfPublication.latestForDiscovery0c47719f-c911-453e-9a84-71f018adcb52

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
3.36 MB
Format:
Adobe Portable Document Format
Description:
document

Collections